This allows a remote to store a piece of arbitrary state associated with a
key. This is needed to support Tahoe, where the file-cap is calculated from
the data stored in it, and used to retrieve a key later. Glacier also would
be much improved by using this.
GETSTATE and SETSTATE are added to the external special remote protocol.
Note that the state is left as-is even when a key is removed from a remote.
It's up to the remote to decide when it wants to clear the state.
The remote state log, $KEY.log.rmt, is a UUID-based log. However,
rather than using the old UUID-based log format, I created a new variant
of that format. The new varient is more space efficient (since it lacks the
"timestamp=" hack, and easier to parse (and the parser doesn't mess with
whitespace in the value), and avoids compatability cruft in the old one.
This seemed worth cleaning up for these new files, since there could be a
lot of them, while before UUID-based logs were only used for a few log
files at the top of the git-annex branch. The transition code has also
been updated to handle these new UUID-based logs.
This commit was sponsored by Daniel Hofer.
This was unexpectedly difficult because of a depdenency cycle. To parse a
preferred content expression involves several things that need to operate
on the list of remotes. Which needs Remote.External. The only way to avoid
this cycle (I tried breaking it at several points) was to skip parsing the
expression in SETWANTED.
That's sorta ok, because git-annex already has to deal with unparsable
preferred content expressions being stored, in order to handle eg,
upgrades. But I'm still not very happy that I cannot check it.
I feel this is a strong indication that I need to beware of further
bloating the special remote protocol interface.
Fixed up a number of things that had worked around there not being a way to
get that.
Most notably, transfer info files on windows now include the process id,
since no locking is currently done. This means the file format varies
between windows and unix.
Windows has a larger (unsigned) PID space, so cannot use the unix CInt
there.
Note that TransferInfo does not yet ever get the TransferPid populated,
as there is missing locking.
Once I built the basic widget, it turned out to be rather easy to replicate
it once per scheduled activity and wire it all up to a fully working UI.
This does abuse yesod's form handling a bit, but I think it's ok.
And it would be nice to have it all ajax-y, so that saving one modified
form won't lose any modifications to other forms. But for now, a nice
simple 115 line of code implementation is a win.
This late night hack session commit was sponsored by Andrea Rota.
I forgot I had <$$> hidden away in Utility.Applicative.
It allows doing the same kind of currying as does >=*>
and I found using it made the code more readable for me.
(*>=> was not used)
This is motivated by a user report that the assistant was repeatedly
retrying transfers of files that had been deleted (in direct mode, so
removing the only copy).
Note that the glacier code retries failed transfers after a while to retry
downloads that have aged long enough to be available. This is ok; if we're
doing a full transfer scan we'll retry on every file that is still in the
git tree.
Also note that this makes the assistant less likely to get every file
referenced by old revs of the git tree. Not something the assistant tries
to ensure anyway, so I feel this is acceptable.
Wrote nice pure transition calculator, and ugly code to stage its results
into the git-annex branch. Also had to split up several Log modules
that Annex.Branch needed to use, but that themselves used Annex.Branch.
The transition calculator is limited to looking at and changing one file at
a time. While this made the implementation relatively easy, it precludes
transitions that do stuff like deleting old url log files for keys that are
being removed because they are no longer present anywhere.
Having one module that knows about all the filenames used on the branch
allows working back from an arbitrary filename to enough information about
it to implement dropping dead remotes and doing other log file compacting
as part of a forget transition.
Works, more or less. --dead is not implemented, and so far a new branch
is made, but keys no longer present anywhere are not scrubbed.
git annex sync fails to push the synced/git-annex branch after a forget,
because it's not a fast-forward of the existing synced branch. Could be
fixed by making git-annex sync use assistant-style sync branches.
When quvi is installed, git-annex addurl automatically uses it to detect
when an page is a video, and downloads the video file.
web special remote: Also support using quvi, for getting files,
or checking if files exist in the web.
This commit was sponsored by Mark Hepburn. Thanks!
Made fromDirect check that a file in the tree has good content (and is not
a broken symlink either) before copying it to another file that has the
same key.
Made replaceFile clean up the temp file if the action that creates it, or
the file replacement action fails.
Most remotes have meters in their implementations of retrieveKeyFile
already. Simply hooking these up to the transfer log makes that information
available. Easy peasy.
This is particularly valuable information for encrypted remotes, which
otherwise bypass the assistant's polling of temp files, and so don't have
good progress bars yet.
Still some work to do here (see progressbars.mdwn changes), but this
is entirely an improvement from the lack of progress bars for encrypted
downloads.
I would have sort of liked to put this in .gitattributes, but it seems
it does not support multi-word attribute values. Also, making this a single
config setting makes it easy to only parse the expression once.
A natural next step would be to make the assistant `git add` files that
are not annex.largefiles. OTOH, I don't think `git annex add` should
`git add` such files, because git-annex command line tools are
not in the business of wrapping git command line tools.
There was confusion in different parts of the progress bar code about
whether an update contained the total number of bytes transferred, or the
number of bytes transferred since the last update. One way this bug
showed up was progress bars that seemed to stick at zero for a long time.
In order to fix it comprehensively, I add a new BytesProcessed data type,
that is explicitly a total quantity of bytes, not a delta.
Note that this doesn't necessarily fix every problem with progress bars.
Particularly, buffering can now cause progress bars to seem to run ahead
of transfers, reaching 100% when data is still being uploaded.
Rather than forking a git-annex transferkey only to have it fail,
just immediately record the failed transfer (so when the drive is plugged
in, the scan will retry it).
The newline after the filename was included in it.
This was generally benign -- mostly these filenames are just displayed,
and the newline didn't matter.
But in the assistant, it caused unexpected dropping of preferred
content.
A characteristic of this bug is that the drop was displayed like this:
drop some_file
ok
* get/copy --auto: Transfer data even if it would exceed numcopies,
when preferred content settings want it.
* drop --auto: Fix dropping content when there are no preferred content
settings.
Monitors git-annex branch for changes, which are noticed by the Merger
thread whenever the branch ref is changed (either due to an incoming push,
or a local change), and refreshes cached config values for modified config
files.
Rate limited to run no more often than once per minute. This is important
because frequent git-annex branch changes happen when files are being
added, or transferred, etc.
A primary use case is that, when preferred content changes are made,
and get pushed to remotes, the remotes start honoring those settings.
Other use cases include propigating repository description and trust
changes to remotes, and learning when a remote has added a new special
remote, so the webapp can present the GUI to enable that special remote
locally.
Also added a uuid.log cache. All other config files already had caches.
in= was problimatic in two ways. First, it referred to a remote by name,
but preferred content expressions can be evaluated elsewhere, where that
remote doesn't exist, or a different remote has the same name. This name
lookup code could error out at runtime. Secondly, in= seemed pretty useless.
in=here did not cause content to be gotten, but it did let present content
be dropped.
present is more useful, although "not present" is unstable and should be
avoided.
When in a subdir, both the normal filepath, and the filepath relative to
the top of the git repo are needed for matching. The former for key lookup,
and the latter for include/exclude to match against. Previously, key lookup
didn't work in this situation.
I'm using transfer for most things, both removable drives and cloud
storage, because it's the safest choice. We'll see if it makes sense
to prompt for the group when setting this up, or let the user pick
something else after the fact.
I've designed these to work well together, I hope. If I get it wrong,
I can just change the code in one place, since these expressions
won't be stored in the git-annex branch.
Solves the issue with preferred content expressions and dropping that
I mentioned yesterday. My solution was to add a parameter to specify a set
of repositories where content should be assumed not to be present. When
deciding whether to drop, it can put the current repository in, and then
if the expression fails to match, the content can be dropped.
Using yesterday's example "(not copies=trusted:2) and (not in=usbdrive)",
when the local repo is one of the 2 trusted copies, the drop check will
see only 1 trusted copy, so the expression matches, and so the content will
not be dropped.
This includes a full parser for the boolean expressions in the log,
that compiles them into Matchers. Those matchers are not used yet.
A complication is that matching against an expression should never
crash git-annex with an error. Instead, vicfg checks that the expressions
parse. If a bad expression (or an expression understood by some future
git-annex version) gets into the log, it'll be ignored.
Most of the code in Limit couldn't fail anyway, but I did have to make
limitCopies check its parameter first, and return an error if it's bad,
rather than erroring at runtime.
Incomplete; I need to finish parsing and saving. This will also be used
for editing transfer control expresssions.
Removed the group display from the status output, I didn't really
like that format, and vicfg can be used to see as well as edit rempository
group membership.
Fix resuming of downloads, which do not have a transfer info file to read.
When checking upload progress, use the MVar, rather than re-reading
the info file.
Catch exceptions in the transfer action. Required a tryAnnex.
The --copies flag now takes an argument of the form:
trustlevel:number or number
If a trust level is specified the command is limited to files
with at least 'number' copies of this 'trustlevel'.
When a transfer fails, the progress info can be used to intelligently
retry it. If the transfer managed to make some progress, but did not
fully complete, then there's a good chance that a retry will finish it
(or at least make more progress).
Transfer info files are updated when the callback is called, updating
the number of bytes transferred.
Left unused p variables at every place the callback should be used.
Which is rather a lot..
A paused transfer's thread keeps running, keeping the slot in use.
This is intentional; pausing a transfer should not let other
queued transfers to run in its place.
This commit includes a paydown on technical debt incurred two years ago,
when I didn't know that it was bad to make custom Read and Show instances
for types. As the routes need Read and Show for Transfer, which includes a
Key, and deriving my own Read instance of key was not practical,
I had to finally clean that up.
So the compact Key read and show functions are now file2key and key2file,
and Read and Show are now derived instances.
Changed all code that used the old instances, compiler checked.
(There were a few places, particularly in Command.Unused, and the test
suite where the Show instance continue to be used for legitimate
comparisons; ie show key_x == show key_y (though really in a bloom filter))
Avoid crashing when "git annex get" fails to download from one location,
and falls back to downloading from a second location.
The problem is that git annex get calls download recursively from within
itself if the first download attempt fails. So the first time through, it
writes a transfer info file, which is then overwritten on the second,
recursive call. Then on cleanup, it tries to delete the file twice, which
of course doesn't work.
Fixed both by not crashing if the transfer file is removed, and by
changing Get to not run download recursively like that. It's the only
thing that did so, and it just seems like a bad idea.
This should fix OSX/BSD issues with not noticing transfer information
files with kqueue. Now that threads are used, the thread can manage the
transfer slot allocation and deallocation by itself; much cleaner.
Since the lock file has to be kept open, this prevented the TransferWatcher
from noticing when it appeared, since inotify (and more importantly kqueue)
events happen when a new file is closed. Writing a separate info file fixes
that problem.
There's still a bug; if the child updates its transfer info file,
then the data from it will superscede the TransferInfo, losing the
info that we should wait on this child.
Not yet tested and places git-annex-shell is run need to be modified to
pass the new field settings.
Note that rsyncServerSend was changed to fork, rather than directly exec
rsync, because it needs to keep the transfer lock held, and clean up the
transfer log when done.
In order to record a semi-useful filename associated with the key,
this required plumbing the filename all the way through to the remotes'
storeKey and retrieveKeyFile.
Note that there is potential for deadlock here, narrowly avoided.
Suppose the repos are A and B. A sends file foo to B, and at the same
time, B gets file foo from A. So, A locks its upload transfer info file,
and then locks B's download transfer info file. At the same time,
B is taking the two locks in the opposite order. This is only not a
deadlock because the lock code does not wait, and aborts. So one of A or
B's transfers will be aborted and the other transfer will continue.
Whew!
storing it in remotes/web/xx/yy/foo.log meant lots of extra directory
objects in git. Now I use xx/yy/foo.log.web, which is just as unique, but
more efficient since foo.log is there anyway.
Of course, it still looks in the old location too.
This overrides the trust.log, and is overridden by the command-line trust
parameters.
It would have been nicer to have Logs.Trust.trustMap just look up the
configuration for all remotes, but a dependency loop prevented that
(Remotes depends on Logs.Trust in several ways). So instead, look up
the configuration when building remotes, storing it in the same forcetrust
field used for the command-line trust parameters.
This needs to run git log on the location log files to get at all past
versions of the file, which tends to be a bit slow.
It would be possible to make a version optimised for showing the location
logs for every key. That would only need to run git log once, so would be
faster, but it would need to process an enormous amount of data, so
would not speed up the individual file case.
In the future it would be nice to support log --format. log --json also
doesn't work right yet.
semitrusted uuids rarely are listed in trust.log, so a special case
is needed to get a list of them. Take the difference of all known uuids
with non-semitrusted uuids.
Avoid ever using read to parse a non-haskell formatted input string.
show :: Key is arguably still show abuse, but displaying Keys as filenames
is just too useful to give up.
Checks location log information, and file contents.
Does not check that numcopies is satisfied, as .gitattributes information
about numcopies is not available in a bare repository. In practice, that
should not be a problem, since fsck is also run in a checkout and will
check numcopies there.