The ctrl-c hack used before didn't actually seem to work.
No haskell libraries expose TerminateProcess. I tried just calling it via
FFI, but got segfaults, probably to do with the wacky process handle not
being managed correctly. Moving it all into one C function worked.
This was hell. The EvilLinker hack was just final icing on the cake.
We all know what the cake was made of.
This is no longer necessary, at least with msysgit 1.8.5.2.msysgit.0.
Its root cause may have been fixed by other recent git path fixes.
It was causing the webapp to fail to make repos on other drives.
On Windows, a file that is not writable cannot be deleted even if in a
directory with write perms. So git object files were not getting deleted
when removing a git repository.
* sync --content: Honor annex-ignore configuration.
* sync: Don't try to sync with xmpp remotes, which are only currently
supported when using the assistant.
Several places assumed this would not happen, and when the AssociatedFile
was Nothing, did nothing.
As part of this, preferred content checks pass the Key around.
Note that checkMatcher is sometimes now called with Just Key and Just File.
It currently constructs a FileMatcher, ignoring the Key. However, if it
constructed a FileKeyMatcher, which contained both, then it might be
possible to speed up parts of Limit, which currently call the somewhat
expensive lookupFileKey to get the Key.
I have not made this optimisation yet, because I am not sure if the key is
always the same. Will need some significant checking to satisfy myself
that's the case..
Make sanity checker run git annex unused daily, and queue up transfers
of unused files to any remotes that will have them. The transfer retrying
code works for us here, so eg when a backup disk remote is plugged in,
any transfers to it are done. Once the unused files reach a remote,
they'll be removed locally as unwanted.
If the setup does not cause unused files to go to a remote, they'll pile
up, and the sanity checker detects this using some heuristics that are
pretty good -- 1000 unused files, or 10% of disk used by unused files,
or more disk wasted by unused files than is left free. Once it detects
this, it pops up an alert in the webapp, with a button to take action.
TODO: Webapp UI to configure this, and also the ability to launch an
immediate cleanup of all unused files.
This commit was sponsored by Simon Michael.
* numcopies: New command, sets global numcopies value that is seen by all
clones of a repository.
* The annex.numcopies git config setting is deprecated. Once the numcopies
command is used to set the global number of copies, any annex.numcopies
git configs will be ignored.
* assistant: Make the prefs page set the global numcopies.
This global numcopies setting is needed to let preferred content
expressions operate on numcopies.
It's also convenient, because typically if you want git-annex to preserve N
copies of files in a repo, you want it to do that no matter which repo it's
running in. Making it global avoids needing to warn the user about gotchas
involving inconsistent annex.numcopies settings.
(See changes to doc/numcopies.mdwn.)
Added a new variety of git-annex branch log file, that holds only 1 value.
Will probably be useful for other stuff later.
This commit was sponsored by Nicolas Pouillard.
Similar to the assistant, this honors any configured preferred content
expressions.
I am not entirely happpy with the implementation. It would be nicer if
the seek function returned a list of actions which included the individual
file gets and copies and drops, rather than the current list of calls to
syncContent. This would allow getting rid of the somewhat reundant display
of "sync file [ok|failed]" after the get/put display.
But, do that, withFilesInGit would need to somehow be able to construct
such a mixed action list. And it would be less efficient than the current
implementation, which is able to reuse several values between eg get and
drop.
Note that currently this does not try to satisfy numcopies when
getting/putting files (numcopies are of course checked when dropping
files!) This makes it like the assistant, and unlike get --auto
and copy --auto, which do duplicate files when numcopies is not yet
satisfied. I don't know if this is the right decision; it only seemed to
make sense to have this parallel the assistant as far as possible to start
with, since I know the assistant works.
This commit was sponsored by Øyvind Andersen Holm.
So that remotes that use a persistent network connection are restarted.
A remote might keep open a long duration network connection, and could
fail to deal well with losing the connection. This is particularly a
concern now that we have external special reotes. An external
special remote that is implemented naively might open the connection only
when PREPARE is sent, and if it loses connection, throw errors on each
request that is made.
(Note that the ssh connection caching should not have this problem; if the
long-duration ssh process loses connection, the named pipe is disconnected
and the next ssh attempt will reconnect. Also, XMPP already deals with
disconnection robustly in its own way.)
There's no way for git-annex to know if a lost network connection actually
affects a given remote, which might have a transfer in process. It does not
make sense to force kill the transferkeys process every time the NetWatcher
detects a change. (Especially because the NetWatcher sometimes polls 1
change per hour.)
In any case, the NetWatcher only detects connection to a network, not
disconnection. So if a transfer is in progress over the network, and the
network goes down, that will need to time out on its own.
An alternate approch that was considered is to use a separate transferkeys
process for each remote, and detect when a request fails, and assume that
means that process is in a failing state and restart it. The problem with
that approach is that if a resource is not available and a remote fails
every time, it degrades to starting a new transferkeys process for every
file transfer, which is too expensive.
Instead, this commit only handles the network reconnection case, and restarts
transferkeys only once the network has reconnected and another transfer needs
to be made. So, a transferkeys process will be reused for 1 hour, or until the
next network connection.
----
The NotificationBroadcaster was rewritten to use TMVars rather than MSampleVars,
to allow checking without blocking if a notification has been received.
----
This commit was sponsored by Tobias Brunner.
This has not been tested at all. It compiles!
The only known missing things are support for encryption, and for get/set
of special remote configuration, and of key state. (The latter needs
separate work to add a new per-key log file to store that state.)
Only thing I don't much like is that initremote needs to be passed both
type=external and externaltype=foo. It would be better to have just
type=foo
Most of this is quite straightforward code, that largely wrote itself given
the types. The only tricky parts were:
* Need to lock the remote when using it to eg make a request, because
in theory git-annex could have multiple threads that each try to use
a remote at the same time. I don't think that git-annex ever does
that currently, but better safe than sorry.
* Rather than starting up every external special remote program when
git-annex starts, they are started only on demand, when first used.
This will avoid slowdown, especially when running fast git-annex query
commands. Once started, they keep running until git-annex stops, currently,
which may not be ideal, but it's hard to know a better time to stop them.
* Bit of a chicken and egg problem with caching the cost of the remote,
because setting annex-cost in the git config needs the remote to already
be set up. Managed to finesse that.
This commit was sponsored by Lukas Anzinger.
Batch detection is heuristic, so can sometimes fail. I observed one such
failure while starting up in a repository with 87000 files. After the first
several batches of ~5000 files, it fell out of batch mode, and never
re-entered it, and so made many more commits of a few files at a time
than necessary.
So, let's always use batch mode when in the startup scan. This avoids the
heuristic there, at least.
There is clearly also room to improve the heuristic. Possibly 10 files is
too high a bar to be found during a commit, on a system that can commit
quickly.
Fixed up a number of things that had worked around there not being a way to
get that.
Most notably, transfer info files on windows now include the process id,
since no locking is currently done. This means the file format varies
between windows and unix.
Windows has a larger (unsigned) PID space, so cannot use the unix CInt
there.
Note that TransferInfo does not yet ever get the TransferPid populated,
as there is missing locking.
transferkeys had used special FDs for communication, but that would be
quite annoying to do in Windows.
Instead, use stdin and stdout. But, to avoid commands like rsync stomping
on them and messing up the communications channel, they're duplicated to a
different handle; stdin is replaced with a null handle, and stdout is
replaced with a copy of stderr. This should all work in windows too.
Stopping in progress transfers may work on windows.. if the types unify
anyway. ;) May need some more porting.
Fixes a test case I received where a corrupted repo was repaired, but the
git-annex branch was not. The root of the problem was that the
MissingObject returned by the repair code was not necessarily a complete
set of all objects that might have been deleted during the repair.
So, stop trying to return that at all, and instead make the index file
checking code explicitly verify that each object the index uses is present.
The assistant's commit code also always avoids git commit, for simplicity.
Indirect mode sync still does a git commit -a to catch unstaged changes.
Note that this means that direct mode sync no longer runs the pre-commit
hook or any other hooks git commit might call. The git annex pre-commit
hook action for direct mode is however explicitly run. (The assistant
already ran git commit with hooks disabled, so no change there.)
This works around horribleness in the Mavericks cpp, which falls over on
the #if when configure is running. Moving it avoids the file being built at
that point.
But it's also a location that makes sense..
The Upgrader avoids checking for upgrades on startup when it was just
upgraded. This avoids an upgrade loop if something goes wrong. One example
of something going wrong would be if the upgrade info file and the
distribution file get out of sync (or the distribution file is cached in
a proxy), so it thinks it has upgraded to a new version, but has really
not.
When an automatic upgrade completes, or when the user clicks on the upgrade
button in one webapp, but also has it open in another browser window/tab,
we have a problem: The current web server is going to stop running in
minutes, but there is no way to send a redirect to the web browser to the
new url.
To solve this, used long polling, so the webapp is always listening for
urls it should redirect to. This allows globally redirecting every open
webapp. Works great! Tested with 2 web browsers with 2 tabs each.
May be useful for other purposes later too, dunno.
The overhead is 2 http requests per page load in the webapp. Due to yesod's
speed, this does not seem to noticibly delay it. Only 1 of the requests
could possibly block the page load, the other is async.
Made alerts be able to have multiple buttons, so the alerts about upgrading
can have a button that enables automatic upgrades.
Implemented automatic upgrading when the program file has changed.
Note that when an automatic upgrade happens, the webapp displays an alert
about it for a few minutes, and then closes. This still needs work.
Not yet wired up to restart the assistant on upgrade; that needs careful
sanity checking to wait until the upgrade is done before restarting.
Used the DirWatcher here, so it gets events for any changes to the
directory containing the program file. (But not subdirs.) This is necessary
in order to detect when the file is renamed as part of the upgrade, which
an inotify on a single file would not detect. (Also, I have DirWatcher code,
but not FileWatcher code.)
Note that upgrades that remove or rename a whole directory tree containing
the executable will *not* trigger this code. So eg, deleting and replacing
the whole standalone tarball dir tree won't work -- but untarring it
over top will. So should dpkg package upgrades.
Added programPath, using a new GHC feature to find the full path to the
executable. The fallback code for old GHC or unsupported OS is less good;
its worst failure mode would be either failing to find the program, and so
not checking for upgrades, or finding a git-annex that's in PATH, but is
not the one running.
This commit was sponsored by John Roepke.
The webapp will check twice a day, when the network is connected, to see if
it can download a distributon upgrade file. If a newer version is found,
display an upgrade alert.
This will need the autobuilders to set UPGRADE_LOCATION to the url
it can be downloaded from when building git-annex. Only builds with that
set need automatic upgrade alerts.
Currently, the upgrade page just requests the user manually download
and upgrade it. But, all the info is provided to do automated upgrades
in the future.
Note that urls used will need to all be https.
This commit was sponsored by Dirk Kraft.
Complicated by such repositories potentially being repos that should have
an annex.uuid, but it failed to be gotten, perhaps due to the past ssh repo
setup bugs. This is handled now by an Upgrade Repository button.
I was able to reproduce something very like this bug by starting
pairing separately on both computers under poor network conditions (ie,
weak wifi on my front porch). Neither computer showed an alert for the
PairReq messages it was seeing (intermittently) from the other.
So, I've made a new PairReq message that has not been seen before
always make the alert pop up, even if the assistant thinks it is
in the middle of its own pairing process (or even another pairing
process with a different box on the LAN).
(This shouldn't cause a rogue PairAck to disrupt a pairing process part
way through.)
The msg contains a haskell-escaped string, so control characters in it can
also be escaped. So this didn't work before, really.
Got rid of the \n check, because current pairing messages actually do
contain a \n, after the ssh public key. Don't want to break
back-compatability.
When starting up the assistant, it'll remind about the current
repository, if it doesn't have checks. And when a removable drive
is plugged in, it will remind if a repository on it lacks checks.
Since that might be annoying, the reminders can be turned off.
This commit was sponsored by Nedialko Andreev.
Added a RemoteChecker thread, that waits for problems to be reported with
remotes, and checks if their git repository is in need of repair.
Currently, only failures to sync with the remote cause a problem to be
reported. This seems enough, but we'll see.
Plugging in a removable drive with a repository on it that is corrupted
does automatically repair the repository, as long as the corruption causes
git push or git pull to fail. Some types of corruption do not, eg
missing/corrupt objects for blobs that git push doesn't need to look at.
So, this is not really a replacement for scheduled git repository fscking.
But it does make the assistant more robust.
This commit is sponsored by Fernando Jimenez.
Currently only implemented for local git remotes. May try to add support
to git-annex-shell for ssh remotes later. Could concevably also be
supported by some special remote, although that seems unlikely.
Cronner user this when available, and when not falls back to
fsck --fast --from remote
git annex fsck --from does not itself use this interface.
To do so, I would need to pass --fast and all other options that influence
fsck on to the git annex fsck that it runs inside the remote. And that
seems like a lot of work for a result that would be no better than
cd remote; git annex fsck
This may need to be revisited if git-annex-shell gets support, since it
may be the case that the user cannot ssh to the server to run git-annex
fsck there, but can run git-annex-shell there.
This commit was sponsored by Damien Diederen.
Once I built the basic widget, it turned out to be rather easy to replicate
it once per scheduled activity and wire it all up to a fully working UI.
This does abuse yesod's form handling a bit, but I think it's ok.
And it would be nice to have it all ajax-y, so that saving one modified
form won't lose any modifications to other forms. But for now, a nice
simple 115 line of code implementation is a win.
This late night hack session commit was sponsored by Andrea Rota.
I probably need to improve handling of the PleaseTerminate exception to
kill the fsck process. Also, if fsck finds bad files, something needs
to requeue downloads of them. Otherwise, this should work, but is probably
quite buggy since I have only tested the pure code over the past 2 days.
Extends the index.lock handling to other git lock files. I surveyed
all lock files used by git, and found more than I expected. All are
handled the same in git; it leaves them open while doing the operation,
possibly writing the new file content to the lock file, and then closes
them when done.
The gc.pid file is excluded because it won't affect the normal operation
of the assistant, and waiting for a gc to finish on startup wouldn't be
good.
All threads except the webapp thread wait on the new startup sanity checker
thread to complete, so they won't try to do things with git that fail
due to stale lock files. The webapp thread mostly avoids doing that kind of
thing itself. A few configurators might fail on lock files, but only if the
user is explicitly trying to run them. The webapp needs to start
immediately when the user has opened it, even if there are stale lock
files.
Arranging for the threads to wait on the startup sanity checker was a bit
of a bear. Have to get all the NotificationHandles set up before the
startup sanity checker runs, or they won't see its signal. Perhaps
the NotificationBroadcaster is not the best interface to have used for
this. Oh well, it works.
This commit was sponsored by Michael Jakl
However, this is not working for gcrypt repos with a mangled hostname.
Problem is that the locked down key is installed before the repo is
initialized, so git-annex-shell refuses to allow the gcrypt special remote
to do its setup.
Improved probing the remote server, so it gathers a list of the
capabilities it has. From that list, we can determine which types
of remotes are supported, and display an appropriate UI.
The new buttons for making gcrypt repos don't work yet, but the old buttons
for unencrypted git repo and encrypted rsync repo have been adapted to the
new data types and are working.
This commit was sponsored by David Schmitt.
This happened because the transferrer process did not know about the new
remote. remoteFromUUID crashed, which crashed the transferrer. When it was
restarted, the new one knew about the new remote so all further files would
transfer, but the one file would temporarily not be, until transfers retried.
Fixed by making remoteFromUUID not crash, and try reloading the remote list
if it does not know about a remote.
Note that this means that remoteFromUUID does not only return Nothing anymore
when the UUID is the UUID of the local repository. So had to change some code
that dependend on that assumption.
Overridable with --user-agent option.
Not yet done for S3 or WebDAV due to limitations of libraries used --
nether allows a user-agent header to be specified.
This commit sponsored by Michael Zehrer.
This pulls off quite a nice trick: When given a path on rsync.net, it
determines if it is an encrypted git repository that the user has
the key to decrypt, and merges with it. This is works even when
the local repository had no idea that the gcrypt remote exists!
(As previously done with local drives.)
This commit sponsored by Pedro Côrte-Real
This is motivated by a user report that the assistant was repeatedly
retrying transfers of files that had been deleted (in direct mode, so
removing the only copy).
Note that the glacier code retries failed transfers after a while to retry
downloads that have aged long enough to be available. This is ok; if we're
doing a full transfer scan we'll retry on every file that is still in the
git tree.
Also note that this makes the assistant less likely to get every file
referenced by old revs of the git tree. Not something the assistant tries
to ensure anyway, so I feel this is acceptable.
Now can tell if a repo uses gcrypt or not, and whether it's decryptable
with the current gpg keys.
This closes the hole that undecryptable gcrypt repos could have before been
combined into the repo in encrypted mode.
When adding a removable drive, it's now detected if the drive contains
a gcrypt special remote, and that's all handled nicely. This includes
fetching the git-annex branch from the gcrypt repo in order to find
out how to set up the special remote.
Note that gcrypt repos that are not git-annex special remotes are not
supported. It will attempt to detect such a gcrypt repo and refuse
to use it. (But this is hard to do any may fail; see
https://github.com/blake2-ppc/git-remote-gcrypt/issues/6)
The problem with supporting regular gcrypt repos is that we don't know
what the gcrypt.participants setting is intended to be for the repo.
So even if we can decrypt it, if we push changes to it they might not be
visible to other participants.
Anyway, encrypted sneakernet (or mailnet) is now fully possible with the
git-annex assistant! Assuming that the gpg key distribution is handled
somehow, which the assistant doesn't yet help with.
This commit was sponsored by Navishkar Rao.
Now the webapp can generate a gpg key that is dedicated for use by
git-annex. Since the key is single use, much of the complexity of
generating gpg keys is avoided.
Note that the key has no password, because gpg-agent is not available
everywhere the assistant is installed. This is not a big security problem
because the key is going to live on the same disk as the git annex
repository, so an attacker with access to it can look directly in the
repository to see the same files that get stored in the encrypted
repository on the removable drive.
There is no provision yet for backing up keys.
This commit sponsored by Robert Beaty.
I noticed that adding a removable drive repo, then trying to add the same
drive again resulted in the question about whether repos should be
combined. This was because the uuid.log was not updated. Which happened
because the new uuid did not get committed on the removable drive.
This fixes that.
To support this, a core.gcrypt-id is stored by git-annex inside the git
config of a local gcrypt repository, when setting it up.
That is compared with the remote's cached gcrypt-id. When different, a
drive has been changed. git-annex then looks up the remote config for
the uuid mapped from the core.gcrypt-id, and tweaks the configuration
appropriately. When there is no known config for the uuid, it will refuse to
use the remote.
This is a git-remote-gcrypt encrypted special remote. Only sending files
in to the remote works, and only for local repositories.
Most of the work so far has involved making initremote work. A particular
problem is that remote setup in this case needs to generate its own uuid,
derivied from the gcrypt-id. That required some larger changes in the code
to support.
For ssh remotes, this will probably just reuse Remote.Rsync's code, so
should be easy enough. And for downloading from a web remote, I will need
to factor out the part of Remote.Git that does that.
One particular thing that will need work is supporting hot-swapping a local
gcrypt remote. I think it needs to store the gcrypt-id in the git config of the
local remote, so that it can check it every time, and compare with the
cached annex-uuid for the remote. If there is a mismatch, it can change
both the cached annex-uuid and the gcrypt-id. That should work, and I laid
some groundwork for it by already reading the remote's config when it's
local. (Also needed for other reasons.)
This commit was sponsored by Daniel Callahan.
Requires git 1.8.4 or newer. When it's installed, a background
git check-ignore process is run, and used to efficiently check ignores
whenever a new file is added.
Thanks to Adam Spiers, for getting the necessary support into git for this.
A complication is what to do about files that are gitignored but have
been checked into git anyway. git commands assume the ignore has been
overridden in this case, and not need any more overriding to commit a
changed version.
However, for the assistant to do the same, it would have to run git ls-files
to check if the ignored file is in git. This is somewhat expensive. Or it
could use the running git-cat-file process to query the file that way,
but that requires transferring the whole file content over a pipe, so it
can be quite expensive too, for files that are not git-annex
symlinks.
Now imagine if the user knows that a file or directory tree will be getting
frequent changes, and doesn't want the assistant to sync it, so gitignores
it. The assistant could overload the system with repeated ls-files checks!
So, I've decided that the assistant will not automatically commit changes
to files that are gitignored. This is a tradeoff. Hopefully it won't be a
problem to adjust .gitignore settings to not ignore files you want the
assistant to autocommit, or to manually git annex add files that are listed
in .gitignore.
(This could be revisited if git-annex gets access to an interface to check
the content of the index w/o forking a git command. This could be libgit2,
or perhaps a separate git cat-file --batch-check process, so it wouldn't
need to ship over the whole file content.)
This commit was sponsored by Francois Marier. Thanks!
This includes recovery from the ssh-agent problem that led to many reporting
http://git-annex.branchable.com/bugs/Internal_Server_Error:_Unknown_UUID/
(Including fixing up .ssh/config to set IdentitiesOnly.)
Remotes that have no known uuid are now displayed in the webapp as
"unfinished". There's a link to check their status, and if the remote
has been set annex-ignore, a retry button can be used to unset that and
try again to set up the remote.
As this bug has shown, the process of adding a ssh remote has some failure
modes that are not really ideal. It would certianly be better if, when
setting up a ssh remote it would detect if it's failed to get the UUID,
and handle that in the remote setup process, rather than waiting until
later and handling it this way.
However, that's hard to do, particularly for local pairing, since the
PairListener runs as a background thread. The best it could do is pop up an
alert if there's a problem. This solution is not much different.
Also, this solution handles cases where the user has gotten their repo into
a mess manually and let's the assistant help with cleaning it up.
This commit was sponsored by Chia Shee Liang. Thanks!
A ssh remote will breifly have NoUUID when it's just being set up and
git-annex-shell has not yet been queried for the UUID. So it doesn't make
sense to display any kind of error message in this case. The UI doesn't
work when there's NoUUID, and it can even crash the ajax long polling code.
So hiding NoUUID repositories is the right thing to do.
I've tested and the automatic refresh of the repolist causes the remote
to show up as soon as a UUID is recorded, when doing local pairing, and
when adding a ssh remote.
When setting up a dedicated ssh key to access the annex on a host,
set IdentitiesOnly to prevent the ssh-agent from forcing use of a different
ssh key.
That behavior could result in unncessary password prompts. I remember
getting a message or two from people who got deluged with password
prompts and I couldn't at the time see why.
Also, it would prevent git-annex-shell from being run on the remote host,
when git-annex was installed there by unpacking the standalone tarball,
since the authorized_keys line for the dedicated ssh key, which sets
up calling git-annex-shell when it's not in path, wouldn't be used.
This fixes
http://git-annex.branchable.com/bugs/Internal_Server_Error:_Unknown_UUID
but I've not closed that bug yet since I should still:
1. Investigate why the ssh remote got set up despite being so broken.
2. Make the webapp not handle the NoUUID state in such an ugly way.
3. Possibly add code to fix up systems that encountered the problem.
Although since it requires changes to .ssh/config this may be one for
the release notes.
Thanks to TJ for pointing me in the right direction to understand what
was happening here.
This bug was introduced in 82a6db8fe8,
which improved handling of adding very large numbers of files by ensuring
that a minimum number of max size commits (5000 files each) were done.
I accidentially made it wait for another change to appear after such a max
size commit, even if a lot of queued changes were already accumulated.
That resulted in a stall when it got to the end. Now fixed to not wait
any longer than necessary to ensure the watcher has had time to wake back
up after the max size commit.
This commit was sponsored by Michael Linksvayer. Thanks!
This is a laziness problem. Despite the bang pattern on newfiles, the list
was not being fully evaluated before cleanup was called. Moving cleanup out
to after the list is actually used fixes this.
More evidence that I should be using ResourceT or pipes, if any was needed.
This affected both the hourly NetWatcherFallback thread and the syncing
when network connection is detected.
It was a reversion of sorts, introduced in
8861e270be, when annex-ignore was changed to
not control git syncing. I forgot to make it check annex-sync at that
point.