* webapp: Support using git-annex on a remote server, which was installed
from the standalone tarball or OSX app, and so does not have
git-annex in PATH (and may also not have git or rsync in PATH).
* standalone tarball, OSX app: Install a ~/.ssh/git-annex-wrapper, which
can be used to run git-annex, git, rsync, etc.
Complicated by such repositories potentially being repos that should have
an annex.uuid, but it failed to be gotten, perhaps due to the past ssh repo
setup bugs. This is handled now by an Upgrade Repository button.
I am not happy about disabling yesod's XSRF tokens, but the webapp has two
guards of its own that should suffice: Listening only to localhost
(normally) and requiring its own auth token on every single request
(always).
However, this is not working for gcrypt repos with a mangled hostname.
Problem is that the locked down key is installed before the repo is
initialized, so git-annex-shell refuses to allow the gcrypt special remote
to do its setup.
Improved probing the remote server, so it gathers a list of the
capabilities it has. From that list, we can determine which types
of remotes are supported, and display an appropriate UI.
The new buttons for making gcrypt repos don't work yet, but the old buttons
for unencrypted git repo and encrypted rsync repo have been adapted to the
new data types and are working.
This commit was sponsored by David Schmitt.
This pulls off quite a nice trick: When given a path on rsync.net, it
determines if it is an encrypted git repository that the user has
the key to decrypt, and merges with it. This is works even when
the local repository had no idea that the gcrypt remote exists!
(As previously done with local drives.)
This commit sponsored by Pedro Côrte-Real
The ssh setup first runs ssh to the real hostname, to probe if a ssh key is
needed. If one is, it generates a mangled hostname that uses a key. This
mangled hostname was being used to ssh into the server to set up the key.
But if the server already had the key set up, and it was locked down, the
setup would fail. This changes it to use the real hostname when sshing in
to set up the key, which avoids the problem.
Note that it will redundantly set up the key on the ssh server. But it's
the same key; the ssh key generation code uses the key if it already
exists.
Now there's a Config type, that's extracted from the git config at startup.
Note that laziness means that individual config values are only looked up
and parsed on demand, and so we get implicit memoization for all of them.
So this is not only prettier and more type safe, it optimises several
places that didn't have explicit memoization before. As well as getting rid
of the ugly explicit memoization code.
Not yet done for annex.<remote>.* configuration settings.
Converted several threads to run in the monad.
Added a lot of useful combinators for working with the monad.
Now the monad includes the name of the thread.
Some debugging messages are disabled pending converting other threads.
I'm using transfer for most things, both removable drives and cloud
storage, because it's the safest choice. We'll see if it makes sense
to prompt for the group when setting this up, or let the user pick
something else after the fact.
webapp: Adds newly created repositories to one of these groups:
clients, drives, servers
This is heuristic, but it's a pretty good heuristic, and can always be
configured.
This was needed for the OSX self-contained app, but is a generally good
idea. It avoids needing perl; is probably faster; and could eventually
be replaced by something faster yet.
This means that anyone serving up the webapp to users as a service
(ie, without providing any git-annex binary at all to the user) still needs
to provide a link to the source code for it, including any modifications
they may make.
This may make git-annex be covered by the AGPL as a whole when it is built
with the webapp. If in doubt, you should ask a lawyer.
When git-annex is built with the webapp disabled, no AGPLed code is used.
Even building in the assistant does not pull in AGPLed code.
Now other repositories can configure special remotes, and when their
configuration has propigated out, they'll appear in the webapp's list of
repositories, with a link to enable them.
Added support for enabling rsync special remotes, and directory special
remotes that are on removable drives. However, encrypted directory special
remotes are not supported yet. The removable drive configuator doesn't
support them yet anyway.
I think this makes sense.. Unless the assistant is running on the server,
the repo won't be updated, so it might as well be bare.
Non-bare repos will be handled by the pairing configurator, later.