Added StringContainingQuotedPath, which is used for ActionItemOther.
In the process, checked every ActionItemOther for those containing
filenames, and made them use quoting.
Sponsored-by: Graham Spencer on Patreon
This eliminates the distinction between decodeBS and decodeBS', encodeBS
and encodeBS', etc. The old implementation truncated at NUL, and the
primed versions had to do extra work to avoid that problem. The new
implementation does not truncate at NUL, and is also a lot faster.
(Benchmarked at 2x faster for decodeBS and 3x for encodeBS; more for the
primed versions.)
Note that filepath-bytestring 1.4.2.1.8 contains the same optimisation,
and upgrading to it will speed up to/fromRawFilePath.
AFAIK, nothing relied on the old behavior of truncating at NUL. Some
code used the faster versions in places where I was sure there would not
be a NUL. So this change is unlikely to break anything.
Also, moved s2w8 and w82s out of the module, as they do not involve
filesystem encoding really.
Sponsored-by: Shae Erisson on Patreon
Not yet used, but allows getting the size of items in the tree fairly
cheaply.
I noticed that CmdLine.Seek uses ls-tree and the feeds the files into
another long-running process to check their size. That would be an
example of a place that might be sped up by using this. Although in that
particular case, it only needs to know the size of unlocked files, not
locked. And since enabling --long probably doubles the ls-tree runtime
or more, the overhead of using it there may outwweigh the benefit.
Fixed that, and made parserLsTree accept the space as well as tab.
Fixes a reversion that made import of a tree from a special remote result in
a merge that deleted files that were not preferred content of that special
remote.
This makes sync a lot faster in the common case where there's no new
backup.
There's still room for it to be faster. Currently the old imported tree
has to be traversed, to generate the ImportableContents. Which then
gets turned around to generate the new imported tree, which is
identical. So, it would be possible to just return a "no new imports",
or an ImportableContents that has a way to graft in a tree. The latter
is probably too far to go to optimise this, unless other things need it.
The former might be worth it, but it's already pretty fast, since git
ls-tree is pretty fast.
Attoparsec parser for diff-tree.
Changed fromRef back to producing a String, to avoid needing to convert
every use of it. However, this does mean I'm going to miss some
opportunities where fromRef is used and the result converted back to a
ByteString. Would be worth revisiting that at some point maybe.
Git will eventually switch to sha2 and there will not be one single
shaSize anymore, but two (40 and 64).
Changed all parsers for git plumbing output to support both sizes of
shas.
One potential problem this does not deal with is, if somewhere in
git-annex it reads two shas from different sources, and compares them
to see if they're the same sha, it would fail if they're sha1 and sha256
of the same value. I don't know if that will really be a concern.
Adds a dependency on filepath-bytestring, an as yet unreleased fork of
filepath that operates on RawFilePath.
Git.Repo also changed to use RawFilePath for the path to the repo.
This does eliminate some RawFilePath -> FilePath -> RawFilePath
conversions. And filepath-bytestring's </> is probably faster.
But I don't expect a major performance improvement from this.
This is mostly groundwork for making Annex.Location use RawFilePath,
which will allow for a conversion-free pipleline.
File mode is octal not decimal. This broke in the conversion to
attoparsec.
(I've submitted the content of Utility.Attoparsec to the attoparsec
developers.)
Test suite passes 100% now.
Goal is to make git-annex faster by using ByteString for all the
worktree traversal. For now, this is focusing on Command.Find,
in order to benchmark how much it helps. (All other commands are
temporarily disabled)
Currently in a very bad unbuildable in-between state.
Prevents merging the import from deleting the non-preferred files from
the branch it's merged into.
adjustTree previously appended the new list of items to the old, which
could result in it generating a tree with multiple files with the same
name. That is not good and confuses some parts of git. Gave it a
function to resolve such conflicts.
That allowed dealing with the problem of what happens when the import
contains some files (or subtrees) with the same name as files that were
filtered out of the export. The files from the import win.
This does not change the overall license of the git-annex program, which
was already AGPL due to a number of sources files being AGPL already.
Legally speaking, I'm adding a new license under which these files are
now available; I already released their current contents under the GPL
license. Now they're dual licensed GPL and AGPL. However, I intend
for all my future changes to these files to only be released under the
AGPL license, and I won't be tracking the dual licensing status, so I'm
simply changing the license statement to say it's AGPL.
(In some cases, others wrote parts of the code of a file and released it
under the GPL; but in all cases I have contributed a significant portion
of the code in each file and it's that code that is getting the AGPL
license; the GPL license of other contributors allows combining with
AGPL code.)
Added graftTree but it's buggy.
Should use graftTree in Annex.Branch.graftTreeish; it will be faster
than the current implementation there.
Started Annex.Import, but untested and it doesn't yet handle tree
grafting.
This removes a bit of complexity, and should make things faster
(avoids tokenizing Params string), and probably involve less garbage
collection.
In a few places, it was useful to use Params to avoid needing a list,
but that is easily avoided.
Problems noticed while doing this conversion:
* Some uses of Params "oneword" which was entirely unnecessary
overhead.
* A few places that built up a list of parameters with ++
and then used Params to split it!
Test suite passes.
This fixes all instances of " \t" in the code base. Most common case
seems to be after a "where" line; probably vim copied the two space layout
of that line.
Done as a background task while listening to episode 2 of the Type Theory
podcast.
Removed instance, got it all to build using fromRef. (With a few things
that really need to show something using a ref for debugging stubbed out.)
Then added back Read instance, and made Logs.View use it for serialization.
This changes the view log format.
Oh, git, you made this so hard. Not determining if a branch pointed to some
corrupt object, that was easy, but dealing with corrupt branches using git
plumbing is a PITA.
Monitors git-annex branch for changes, which are noticed by the Merger
thread whenever the branch ref is changed (either due to an incoming push,
or a local change), and refreshes cached config values for modified config
files.
Rate limited to run no more often than once per minute. This is important
because frequent git-annex branch changes happen when files are being
added, or transferred, etc.
A primary use case is that, when preferred content changes are made,
and get pushed to remotes, the remotes start honoring those settings.
Other use cases include propigating repository description and trust
changes to remotes, and learning when a remote has added a new special
remote, so the webapp can present the GUI to enable that special remote
locally.
Also added a uuid.log cache. All other config files already had caches.
I'm down to 9 places in the code that can produce unwaited for zombies.
Most of these are pretty innocuous, at least for now, are only
used in short-running commands, or commands that run a set of
actions and explicitly reap zombies after each one.
The one from Annex.Branch.files could be trouble later,
since both Command.Fsck and Command.Unused can trigger it,
and the assistant will be doing those eventally. Ditto the one in
Git.LsTree.lsTree, which Command.Unused uses.
The only ones currently affecting the assistant though, are
in Git.LsFiles. Several threads use several of those.
(And yeah, using pipes or ResourceT would be a less ad-hoc approach,
but I don't really feel like ripping my entire code base apart right
now to change a foundation monad. Maybe one of these days..)
Under ghc 7.4, this seems to be able to handle all filename encodings
again. Including filename encodings that do not match the LANG setting.
I think this will not work with earlier versions of ghc, it uses some ghc
internals.
Turns out that ghc 7.4 has a special filesystem encoding that it uses when
reading/writing filenames (as FilePaths). This encoding is documented
to allow "arbitrary undecodable bytes to be round-tripped through it".
So, to get FilePaths from eg, git ls-files, set the Handle that is reading
from git to use this encoding. Then things basically just work.
However, I have not found a way to make Text read using this encoding.
Text really does assume unicode. So I had to switch back to using String
when reading/writing data to git. Which is a pity, because it's some
percent slower, but at least it works.
Note that stdout and stderr also have to be set to this encoding, or
printing out filenames that contain undecodable bytes causes a crash.
IMHO this is a misfeature in ghc, that the user can pass you a filename,
which you can readFile, etc, but that default, putStr of filename may
cause a crash!
Git.CheckAttr gave me special trouble, because the filenames I got back
from git, after feeding them in, had further encoding breakage.
Rather than try to deal with that, I just zip up the input filenames
with the attributes. Which must be returned in the same order queried
for this to work.
Also of note is an apparent GHC bug I worked around in Git.CheckAttr. It
used to forkProcess and feed git from the child process. Unfortunatly,
after this forkProcess, accessing the `files` variable from the parent
returns []. Not the value that was passed into the function. This screams
of a bad bug, that's clobbering a variable, but for now I just avoid
forkProcess there to work around it. That forkProcess was itself only added
because of a ghc bug, #624389. I've confirmed that the test case for that
bug doesn't reproduce it with ghc 7.4. So that's ok, except for the new ghc
bug I have not isolated and reported. Why does this simple bit of code
magnet the ghc bugs? :)
Also, the symlink touching code is currently broken, when used on utf-8
filenames in a non-utf-8 locale, or probably on any filename containing
undecodable bytes, and I temporarily commented it out.
In git, a Ref can be a Sha, or a Branch, or a Tag. I added type aliases for
those. Note that this does not prevent mixing up of eg, refs and branches
at the type level. Since git really doesn't care, except rare cases like
git update-ref, or git tag -d, that seems ok for now.
There's also a tree-ish, but let's just use Ref for it. A given Sha or Ref
may or may not be a tree-ish, depending on the object type, so there seems
no point in trying to represent it at the type level.
Many functions took the repo as their first parameter. Changing it
consistently to be the last parameter allows doing some useful things with
currying, that reduce boilerplate.
In particular, g <- gitRepo is almost never needed now, instead
use inRepo to run an IO action in the repo, and fromRepo to get
a value from the repo.
This also provides more opportunities to use monadic and applicative
combinators.
This yields a second or so speedup in unused, find, etc. Seems that even
when the ByteString is immediately split and then converted to Strings,
it's faster.
I may try to push ByteStrings out into more of git-annex gradually,
although I suspect most of the time-critical parts are already covered
now, and many of the rest rely on libraries that only support Strings.
Added Git.ByteString which replaces Git IO methods with ones using lazy
ByteStrings. This can be more efficient when large quantities of data are
being read from git.
In Git.LsTree, parse git ls-tree output more efficiently, thanks
to ByteString. This benchmarks 25% faster, in a benchmark that includes
(probably predominately) the run time for git ls-tree itself.
In real world numbers, this makes git annex unused 2 seconds faster for
each branch it needs to check, in my usual large repo.