I'm unsure why this fixed it, but it did. Seems to suggest that the
memory leak is not due to a bug in my code, but that ghc didn't manage
to take full advantage of laziness, or was failing to gc something it
could have.
I've long considered the XMPP support in git-annex a wart.
It's nice to remove it.
(This also removes the NetMessager, which was only used for XMPP, and the
daemonstatus's desynced list (likewise).)
Existing XMPP remotes should be ignored by git-annex.
This commit was sponsored by Brock Spratlen on Patreon.
Multiple external special remote processes for the same remote will be
started as needed when using -J.
This should not beak any existing external special remotes, because running
multiple git-annex commands at the same time could already start multiple
processes for the same external special remotes.
Only done in -J mode because only if there's concurrency can downloading
from two remotes be faster. Without concurrency, it's likely the case that
sequential downloads from the same remote are faster than switching back
and forth between two remotes.
There is some hairy MVar code here, but basically it just keeps
the activeremotes MVar full except when deciding which remote to assign
to a thread.
Also affects gets by sync --content -J
This commit was sponsored by Jochen Bartl.
This was disabled in commit 61ccf95004,
because only the assistant used them, and they were clutter. But, now
--failed also uses them.
Remove the failure log files after successful transfers. Should avoid
most of the clutter problems.
Commit 61ccf95004 mentions a subtle behavior
change, which has now been reverted:
There is one behavior change from this. If glacier is being used, and a
manual git annex get --from glacier fails because the file isn't available
yet, the assistant will no longer later see that failed transfer file and
retry the get.
Note that get --from foo --failed will get things that a previous get --from bar
tried and failed to get, etc. I considered making --failed only retry
transfers from the same remote, but it was easier, and seems more useful,
to not have the same remote requirement.
Noisy due to some refactoring into Types/
Show branch:file that is being operated on.
I had to make ActionItem a type and not a type class because
withKeyOptions' passed two different types of values when using the type
class, and I could not get the type checker to accept that.
Added --branch option to copy, drop, fsck, get, metadata, mirror, move, and
whereis commands. This option makes git-annex operate on files that are
included in a specified branch (or other treeish).
The names of the files from the branch that are being operated on are not
displayed yet; only the keys. Displaying the filenames will need changes
to every affected command.
Also, note that --branch can be specified repeatedly. This is not really
documented, but seemed worth supporting, especially since we may later want
the ability to operate on all branches matching a refspec. However, when
operating on two branches that contain the same key, that key will be
operated on twice.
This is useful for makking a special remote that anyone with a clone of the
repo and your public keys can upload files to, but only you can decrypt the
files stored in it.
git 2.8.1 (or perhaps 2.9.0) is going to prevent git merge from merging in
unrelated branches. Since the webapp's pairing etc features often combine
together repositories with unrelated histories, work around this behavior
change by setting GIT_MERGE_ALLOW_UNRELATED_HISTORIES when the assistant
merges.
Note though that this is not done for git annex sync's merges, so
it will follow git's default or configured behavior.
Remove closed bugs and todos that were last edited or commented before Q3 2015.
Command line used:
for f in $(grep -l '\[\[done\]\]' -- *.mdwn); do d="$(echo "$f" | sed 's/.mdwn$//')"; if [ -z "$(git log --since=09-09-2015 --pretty=oneline -- "$f")" -a -z "$(git log --since=09-09-2015 --pretty=oneline -- "$d")" ]; then git rm -- "$f"; git rm -rf "$d"; fi; done
for f in $(grep -l '|done\]\]' -- *.mdwn); do d="$(echo "$f" | sed 's/.mdwn$//')"; if [ -z "$(git log --since=09-09-2015 --pretty=oneline -- "$f")" -a -z "$(git log --since=09-09-2015 --pretty=oneline -- "$d")" ]; then git rm -- "$f"; git rm -rf "$d"; fi; done
This lets readonly repos be used. If a repo is readonly, we can ignore the
keys database, because nothing that we can do will change the state of the
repo anyway.
The benchmark shows that the database access is quite fast indeed!
And, it scales linearly to the number of keys, with one exception,
getAssociatedKey.
Based on this benchmark, I don't think I need worry about optimising
for cases where all files are locked and the database is mostly empty.
In those cases, database access will be misses, and according to this
benchmark, should add only 50 milliseconds to runtime.
(NB: There may be some overhead to getting the database opened and locking
the handle that this benchmark doesn't see.)
joey@darkstar:~/src/git-annex>./git-annex benchmark
setting up database with 1000
setting up database with 10000
benchmarking keys database/getAssociatedFiles from 1000 (hit)
time 62.77 μs (62.70 μs .. 62.85 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 62.81 μs (62.76 μs .. 62.88 μs)
std dev 201.6 ns (157.5 ns .. 259.5 ns)
benchmarking keys database/getAssociatedFiles from 1000 (miss)
time 50.02 μs (49.97 μs .. 50.07 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 50.09 μs (50.04 μs .. 50.17 μs)
std dev 206.7 ns (133.8 ns .. 295.3 ns)
benchmarking keys database/getAssociatedKey from 1000 (hit)
time 211.2 μs (210.5 μs .. 212.3 μs)
1.000 R² (0.999 R² .. 1.000 R²)
mean 211.0 μs (210.7 μs .. 212.0 μs)
std dev 1.685 μs (334.4 ns .. 3.517 μs)
benchmarking keys database/getAssociatedKey from 1000 (miss)
time 173.5 μs (172.7 μs .. 174.2 μs)
1.000 R² (0.999 R² .. 1.000 R²)
mean 173.7 μs (173.0 μs .. 175.5 μs)
std dev 3.833 μs (1.858 μs .. 6.617 μs)
variance introduced by outliers: 16% (moderately inflated)
benchmarking keys database/getAssociatedFiles from 10000 (hit)
time 64.01 μs (63.84 μs .. 64.18 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 64.85 μs (64.34 μs .. 66.02 μs)
std dev 2.433 μs (547.6 ns .. 4.652 μs)
variance introduced by outliers: 40% (moderately inflated)
benchmarking keys database/getAssociatedFiles from 10000 (miss)
time 50.33 μs (50.28 μs .. 50.39 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 50.32 μs (50.26 μs .. 50.38 μs)
std dev 202.7 ns (167.6 ns .. 252.0 ns)
benchmarking keys database/getAssociatedKey from 10000 (hit)
time 1.142 ms (1.139 ms .. 1.146 ms)
1.000 R² (1.000 R² .. 1.000 R²)
mean 1.142 ms (1.140 ms .. 1.144 ms)
std dev 7.142 μs (4.994 μs .. 10.98 μs)
benchmarking keys database/getAssociatedKey from 10000 (miss)
time 1.094 ms (1.092 ms .. 1.096 ms)
1.000 R² (1.000 R² .. 1.000 R²)
mean 1.095 ms (1.095 ms .. 1.097 ms)
std dev 4.277 μs (2.591 μs .. 7.228 μs)
Several tricky parts:
* When the conflict is just between the same key being locked and unlocked,
the unlocked version wins, and the file is not renamed in this case.
* Need to update associated file map when conflict resolution renames
an unlocked file.
* git merge runs the smudge filter on the conflicting file, and actually
overwrites the file with the same content it had before, and so
invalidates its inode cache. This makes it difficult to know when it's
safe to remove such files as conflict cruft, without going so far as to
compare their entire contents.
Dealt with this by preventing the smudge filter from populating the file
when a merge is run. However, that also prevents the smudge filter being
run for non-conflicting files, so eg moving a file won't put its new
content into place.
* Ideally, if a merge or a merge conflict resolution renames an unlocked
file, the file in the work tree can just be moved, rather than copying
the content to a new worktree file.
This is attempted to be done in merge conflict resolution, but
due to git merge's behavior of running smudge filters, what actually
seems to happen is the old worktree file with the content is deleted and
rewritten as a pointer file, so doesn't get reused.
So, this is probably not as efficient as it optimally could be.
If that becomes a problem, could look into running the merge in a separate
worktree and updating the real worktree more efficiently, similarly to the
direct mode merge. However, the direct mode merge had a lot of bugs, and
I'd rather not use that more error-prone method unless really needed.
Decided it's too scary to make v6 unlocked files have 1 copy by default,
but that should be available to those who need it. This is consistent with
git-annex not dropping unused content without --force, etc.
* Added annex.thin setting, which makes unlocked files in v6 repositories
be hard linked to their content, instead of a copy. This saves disk
space but means any modification of an unlocked file will lose the local
(and possibly only) copy of the old version.
* Enable annex.thin by default on upgrade from direct mode to v6, since
direct mode made the same tradeoff.
* fix: Adjusts unlocked files as configured by annex.thin.
Writes are optimised by queueing up multiple writes when possible.
The queue is flushed after the Annex monad action finishes. That makes it
happen on program termination, and also whenever a nested Annex monad action
finishes.
Reads are optimised by checking once (per AnnexState) if the database
exists. If the database doesn't exist yet, all reads return mempty.
Reads also cause queued writes to be flushed, so reads will always be
consistent with writes (as long as they're made inside the same Annex monad).
A future optimisation path would be to determine when that's not necessary,
which is probably most of the time, and avoid flushing unncessarily.
Design notes for this commit:
- separate reads from writes
- reuse a handle which is left open until program
exit or until the MVar goes out of scope (and autoclosed then)
- writes are queued
- queue is flushed periodically
- immediate queue flush before any read
- auto-flush queue when database handle is garbage collected
- flush queue on exit from Annex monad
(Note that this may happen repeatedly for a single database connection;
or a connection may be reused for multiple Annex monad actions,
possibly even concurrent ones.)
- if database does not exist (or is empty) the handle
is not opened by reads; reads instead return empty results
- writes open the handle if it was not open previously
The annex object for it may have been modified due to hard link, and
that should be cleaned up when the new version is added. If another
associated file has the old key's content, that's linked into the annex
object. Otherwise, update location log to reflect that content has been
lost.
When a v6 unlocked files is removed from the work tree,
unused doesn't show it. When it gets removed from the index,
unused does show it. This is the same as a locked file.
This only adds 1 stat to each file fscked for locked files, so
added overhead is minimal.
For unlocked files it has to access the database to see if a file
is modified.
If multiple files point to the same annex object, the user may want to
modify them independently, so don't use a hard link.
Also, check diskreserve when copying.
Note that the implementation uses replaceFile, so that the actual
replacement of the work tree file is atomic. This seems a good property to
have!
It would be possible for unlock in v6 mode to be run on files that do not
have their content present. However, that would be a behavior change from
before, and I don't see any immediate need to support it, so I didn't
implement it.
This avoids querying the database when the content file doen't exist
(or otherwise fails the provided check). However, it does add overhead of
querying the database, and will certianly impact performance.
The Keys database can hold multiple inode caches for a given key. One for
the annex object, and one for each pointer file, which may not be hard
linked to it.
Inode caches for a key are recorded when its content is added to the annex,
but only if it has known pointer files. This is to avoid the overhead of
maintaining the database when not needed.
When the smudge filter outputs a file's content, the inode cache is not
updated, because git's smudge interface doesn't let us write the file. So,
dropping will fall back to doing an expensive verification then. Ideally,
git's interface would be improved, and then the inode cache could be
updated then too.
This removes ambiguity, because while someone might have "WORM--foo" in a
file that's not intended to be a git-annex pointer file,
"annex/objects/WORM--foo" is less likely.
Also, 664cc987e8 had a caveat about symlink
targets being parsed as pointer files, and now the same parser is used for
both.
I did not include any hash directories before the key in the pointer file,
as they're not needed. However, if they were included, the parser would
still work ok.
Note that this changes the default behavior of git add in a newly
initialized repository; it will add files to the annex.
Don't like that this could break workflows, but it's necessary in order for
any pointer files in the repo to be handled by git-annex.
Since all places where a repo is used in direct mode need to have git-annex
upgraded before the repo can safely be converted to v6, the upgrade needs
to be manual for now.
I suppose that at some point I'll want to drop all the direct mode support
code. At that point, will stop supporting v5, and will need to auto-upgrade
any remaining v5 repos. If possible, I'd like to carry the direct mode
support for say, a year or so, to give people plenty of time to upgrade and
avoid disruption.
importfeed just calls addurl functions, so inherits this from it.
Note that addurl still generates a temp file, and uses that key to download
the file. It just adds it to the work tree at the end when the file is small.