Stale and bad files are rare, so it's more efficient to use inAnnex to see
if they can be deleted, rather than keeping the list of all present keys
around for them.
Before, it leaked space due to caching lists of keys. Now all necessary
data about keys is calculated as they stream in.
The "nearly constant" is due to getKeysPresent, which builds up a lot
of [] thunks as it traverses .git/annex/objects/. Will deal with it later.
Much of the memory bloat turned out to be due to getKeysReferenced
containing a mapM, which is strict and buffered the whole list
rather than streaming it.
The other half of the bloat was due to building a temporary Set
in order to call S.difference. While that is more cpu efficient,
I switched to successive S.delete, since with it, I can run a whole
git annex unused in less than 8 mb of memory.
The whole Set of keys with content available is still stored in memory,
so running unused in a repo with a whole lot of file content will still
use more memory. In a repo containing 6000 files, it needed 40 mb.
Note that the status command still uses the bloatful getKeysReferenced.
This has two benefits.
1. When a lot of refs are going to be received, get them via lower cost
connection when possible.
2. Allows ctrl-c of sync after the cheaper remotes have been pulled from
(or pushed to).
Rather than go through the location log to see which files are present on
the remote, it simply looks at the disk contents directly.
I benchmarked this speeding up scanning 834 files, from an annex on my
phone's SSD, from 11.39 seconds to 1.31 seconds. (No files actually moved.)
Also benchmarked 8139 files, from an annex on spinning storage,
speeding up from 103.17 to 13.39 seconds.
Note that benchmarking with an encrypted annex on flash actually showed a
minor slowdown with this optimisation -- from 13.93 to 14.50 seconds. Seems
the overhead of doing the crypto needed to get the filenames to directly
check can be higher than the overhead of looking up data in the location
log. (Which says good things about how well the location log and git have
been optimised!) It *may* make sense to make encrypted local remotes not
have hasKeyCheap set; further benchmarking is called for.
Eventually, git-annex might try running this after making changes to
a remote. I have not yet thought of a good way for it to tell which
remotes it needs to run it on though. It can't just do it when
shutting down a cached ssh connection, because ssh connection caching
is optional, and that would not handle local remotes not accessed over ssh
either.
Now changes are staged into the branch's index, but not committed,
which avoids growing a large journal. And sync and merge always
explicitly commit, ensuring that even when they do nothing else,
they commit the staged changes.
Added a flag file to indicate that the branch's journal contains
uncommitted changes. (Could use git ls-files, but don't want to run
that every time.)
In the future, this ability to have uncommitted changes staged in the
journal might be used on remotes after a series of oneshot commands.
Now gitattributes are looked up, efficiently, in only the places that
really need them, using the same approach used for cat-file.
The old CheckAttr code seemed very fragile, in the way it streamed files
through git check-attr.
I actually found that cad8824852
was still deadlocking with ghc 7.4, at the end of adding a lot of files.
This should fix that problem, and avoid future ones.
The best part is that this removes withAttrFilesInGit and withNumCopies,
which were complicated Seek methods, as well as simplfying the types
for several other Seek methods that had a Backend tupled in.
Can be used to specify what file the url is added to. This can be used to
override the default filename that is used when adding an url, which is
based on the url. Or, when the file already exists, the url is recorded as
another location of the file.
Under ghc 7.4, this seems to be able to handle all filename encodings
again. Including filename encodings that do not match the LANG setting.
I think this will not work with earlier versions of ghc, it uses some ghc
internals.
Turns out that ghc 7.4 has a special filesystem encoding that it uses when
reading/writing filenames (as FilePaths). This encoding is documented
to allow "arbitrary undecodable bytes to be round-tripped through it".
So, to get FilePaths from eg, git ls-files, set the Handle that is reading
from git to use this encoding. Then things basically just work.
However, I have not found a way to make Text read using this encoding.
Text really does assume unicode. So I had to switch back to using String
when reading/writing data to git. Which is a pity, because it's some
percent slower, but at least it works.
Note that stdout and stderr also have to be set to this encoding, or
printing out filenames that contain undecodable bytes causes a crash.
IMHO this is a misfeature in ghc, that the user can pass you a filename,
which you can readFile, etc, but that default, putStr of filename may
cause a crash!
Git.CheckAttr gave me special trouble, because the filenames I got back
from git, after feeding them in, had further encoding breakage.
Rather than try to deal with that, I just zip up the input filenames
with the attributes. Which must be returned in the same order queried
for this to work.
Also of note is an apparent GHC bug I worked around in Git.CheckAttr. It
used to forkProcess and feed git from the child process. Unfortunatly,
after this forkProcess, accessing the `files` variable from the parent
returns []. Not the value that was passed into the function. This screams
of a bad bug, that's clobbering a variable, but for now I just avoid
forkProcess there to work around it. That forkProcess was itself only added
because of a ghc bug, #624389. I've confirmed that the test case for that
bug doesn't reproduce it with ghc 7.4. So that's ok, except for the new ghc
bug I have not isolated and reported. Why does this simple bit of code
magnet the ghc bugs? :)
Also, the symlink touching code is currently broken, when used on utf-8
filenames in a non-utf-8 locale, or probably on any filename containing
undecodable bytes, and I temporarily commented it out.
I had not realized what a memory leak the lazy state monad could be,
although I have not seen much evidence of actual leaking in git-annex.
However, if running git-annex on a great many files, this could matter.
The additional Utility.State.changeState adds even more strictness,
avoiding a problem I saw in github-backup where repeatedly modifying
state built up a huge pile of thunks.
Done by adding a oneshot mode, in which location log changes are written to
the journal, but not committed. Taking advantage of git-annex's existing
ability to recover in this situation.
This is used by git-annex-shell and other places where changes are made to
a remote's location log.
Fscking a remote is now supported. It's done by retrieving
the contents of the specified files from the remote, and checking them,
so can be an expensive operation.
(Several optimisations are possible, to speed it up, of course.. This is
the slow and stupid remote fsck to start with.)
Still, if the remote is a special remote, or a git repository that you
cannot run fsck in locally, it's nice to have the ability to fsck it.
If you have any directory special remotes, now would be a good time to
fsck them, in case you were hit by the data loss bug fixed in the
previous release!
Including the file in the lines behaves better when limiting with --after,
since only files that changed in the time period are shown.
Still not fully happy with the line layout, but putting the +/- first
followed by the date seems a good change.
This needs to run git log on the location log files to get at all past
versions of the file, which tends to be a bit slow.
It would be possible to make a version optimised for showing the location
logs for every key. That would only need to run git log once, so would be
faster, but it would need to process an enormous amount of data, so
would not speed up the individual file case.
In the future it would be nice to support log --format. log --json also
doesn't work right yet.
Made --from and --to command-specific options.
Added generic storage for values of command-specific options,
which allows removing some of the special case fields in AnnexState.
(Also added generic storage for command-specific flags, although there are
not yet any.)
Note that this storage uses a Map, so repeatedly looking up the same value
is slightly more expensive than looking up an AnnexState field. But, the
value can be looked up once in the seek stage, transformed as necessary,
and passed in a closure to the start stage, and this avoids that overhead.
Still, I'm hesitant to use this for things like force or fast flags.
It's probably best to reserve it for flags that are only used by a few
commands, or options like --from and --to that it's important only be
allowed to be used with commands that implement them, to avoid user
confusion.
With --fast, unavailable local remotes are filtered out of the fast set.
This way, if there are local remotes, --fast always acts only on them,
and if none are mounted, acts on nothing. This consistency is better
than --fast acting on different remotes depending on what's mounted.
Some changes to make automated syncing nicer. Merge from both the remote's
$branch and its synced/$branch; either could have new changes. Create
synced/$branch on the remote when pushing.
This optimises away the need to run anything in some common cases.
It's particularly useful on push; no need to push if the tracking branch
we just pulled is the same as the branch we're going to push.
The other uses of it can all be simplified using Git.Ref.base,
Git.Ref.under, and show.
In some cases, describe was being used to shorten the branch name
unnecessarily, and I instead pass the fully qualified name to git.
git-annex normally only runs the branch update once per run, for speed, but
since this fetches new remote git-annex tracking branches, they need to be
merged in after that fetch. An earlier call to Remote.byName was causing
the update to run before the fetch sometimes, but it could have been
anything. Just force the update to happen in the right place.
A crash on parsing was fixed a while ago. This adds support for fully
correctly parsing multiline git config values, using git config --null.
Since git-annex-shell configlist uses normal git config output, I left in
support for that too; the two forms of config output can be easily
identified by the parser. Since configlist only prints the annex.uuid
config, there's no risk of multiline values there, so no need to change it.
Added files don't have to be committed before they can be unannexed.
unannex no longer commits existing staged changes
unannex of the last file in a directory now works, before it failed because
git rm deleted the directory out from under it,
Supporting multiple directory hash types will allow converting to a
different one, without a flag day.
gitAnnexLocation now checks which of the possible locations have a file.
This means more statting of files. Several places currently use
gitAnnexLocation and immediately check if the returned file exists;
those need to be optimised.
The only fully supported thing is to have the main repository on one disk,
and .git/annex on another. Only commands that move data in/out of the annex
will need to copy it across devices.
There is only partial support for putting arbitrary subdirectories of
.git/annex on different devices. For one thing, but this can require more
copies to be done. For example, when .git/annex/tmp is on one device, and
.git/annex/journal on another, every journal write involves a call to
mv(1). Also, there are a few places that make hard links between various
subdirectories of .git/annex with createLink, that are not handled.
In the common case without cross-device, the new moveFile is actually
faster than renameFile, avoiding an unncessary stat to check that a file
(not a directory) is being moved. Of course if a cross-device move is
needed, it is as slow as mv(1) of the data.
It would be nice if command-specific options were supported. The first
difficulty is that which command is being called is not known until after
getopt; but that could be worked around by finding the first non-dashed
parameter. Storing the settings without putting them in the annex monad is
the next difficulty; it could perhaps be handled by making the seek stage
pass applicable settings into the start stage (and from there on to perform
as needed). But that still leaves a problem, what data type to use to
represent the options between getopt and seek?
Left out the backend usage graph for now, and bad/temp directory sizes
are only displayed when present. Also, disk usage is returned as a string
with units, which I can see changing later.
In git, a Ref can be a Sha, or a Branch, or a Tag. I added type aliases for
those. Note that this does not prevent mixing up of eg, refs and branches
at the type level. Since git really doesn't care, except rare cases like
git update-ref, or git tag -d, that seems ok for now.
There's also a tree-ish, but let's just use Ref for it. A given Sha or Ref
may or may not be a tree-ish, depending on the object type, so there seems
no point in trying to represent it at the type level.
semitrusted uuids rarely are listed in trust.log, so a special case
is needed to get a list of them. Take the difference of all known uuids
with non-semitrusted uuids.
More accurately, it was supported already when map uses git-annex-shell,
but not when it does not.
Note that the user name cannot be shell escaped using git-annex's current
approach for shell escaping. I tried and some shells like dash cannot
cd ~'joey'. Rest of directory is still shell escaped, not for security but
in case a directory has a space or other weird character.
git-annex-shell inannex now returns always 0, 1, or 100 (the last when
it's unclear if content is currently in the index due to it currently being
moved or dropped).
(Actual locking code still not yet written.)
The lock will only persist during the perform stage, so the content must
be removed from the annex then, rather than in the cleanup stage.
(No lock is actually taken yet.)
Many functions took the repo as their first parameter. Changing it
consistently to be the last parameter allows doing some useful things with
currying, that reduce boilerplate.
In particular, g <- gitRepo is almost never needed now, instead
use inRepo to run an IO action in the repo, and fromRepo to get
a value from the repo.
This also provides more opportunities to use monadic and applicative
combinators.
Avoid ever using read to parse a non-haskell formatted input string.
show :: Key is arguably still show abuse, but displaying Keys as filenames
is just too useful to give up.
This is my own damn fault for not making UUID a real type, and then relying
on the type checker to ensure my refactoring was correct -- which it wasn't!
I should probably add code to clean up bogus entries in the uuid.log, but
right now I want to get the fix out there to prevent people experiencing
this bug.
I should also make UUID a real data type.
The backend usage graph shows present keys as well as keys found in the
repository tree, so it will also be populated for bare repositories.
Changed wording to "visible annex keys", which explains why it's 0 in
a bare repository (no keys visible as no tree), and also why it varies
depending on which branch is checked out. This seemed better than doing
something expensive to look up keys from the git-annex branch.
Checks location log information, and file contents.
Does not check that numcopies is satisfied, as .gitattributes information
about numcopies is not available in a bare repository. In practice, that
should not be a problem, since fsck is also run in a checkout and will
check numcopies there.
This new approach allows filtering out checks from the default set that are
not appropriate for a command, rather than having to list every check
that is appropriate. It also reduces some boilerplate.
Haskell does not define Eq for functions, so I had to go a long way around
with each check having a unique id. Meh.
This yields a second or so speedup in unused, find, etc. Seems that even
when the ByteString is immediately split and then converted to Strings,
it's faster.
I may try to push ByteStrings out into more of git-annex gradually,
although I suspect most of the time-critical parts are already covered
now, and many of the rest rely on libraries that only support Strings.
Fixed the laziness space leak, so it runs in 60 mb or so again. Slightly
faster due to using Data.Set.difference now, although this also makes it
use slightly more memory.
Also added display of the refs being checked, and made unused --from
also check all refs for things in the remote.
Using Sets is the right thing; they have constant size lookup like my
SizeList, and logn insertation, which beats nub to death.
Runs faster than --fast mode did before, and gives accurate counts.
13 seconds total runtime with a warm cache in a repository with 40 thousand
keys.
find: Rather than only showing files whose contents are present, when used
with --exclude --copies or --in, displays all files that match the
specified conditions.
Note that this is a behavior change for find --exclude! Old behavior
can be gotten with find --in . --exclude=...
These were a mistake, they make the type signatures harder to read and
less flexible. The CommandSeek, CommandStart, CommandPerform, and
CommandCleanup types were a good idea, but composing them with the
parameters expected is going too far.
It probably does not make sense to enable auto mode for move. I cannot
think of a situation where it would make sense to try to use it.
A hypothetical auto mode for move would only differ from a normal
move in one case -- when both repositories have a file, move deletes it
from one, and this reduces the number of copies. So an auto mode would
either only let move work in that situation, or avoid removing the file
in that situation, depending on the number of copies. This would be
complex to implement, and is perhaps not a very obvious behavior.
The error is a good thing to have, so users don't expect it to do something
it does not.
get, drop: Added --auto option, which decides whether to get/drop content
as needed to work toward the configured numcopies.
The problem with bundling it up in optimize was that I then found I wanted
to run an optmize that did not drop files, only got them. Considered adding
a --only-get switch to it, but that seemed wrong. Instead, let's make
existing subcommands optionally smarter.
Note that the only actual difference between drop and drop --auto is that
the latter does not even try to drop a file if it knows of not enough
copies, and does not print any error messages about files it was unable to
drop.
It might be nice to make get avoid asking git for attributes when not in
auto mode. For now it always asks for attributes.
Adds a missing newline when a longnote is followed by a endresult.
Multiple longnotes in a row will now be separated by a blank line, which
could be a bug or a feature depending on taste.
Removed several places where newlines were explicitly displayed after
longnotes.
First, this ensures that git annex addurl, when run repeatedly with the
same url, doesn't create duplicate files, which it did before when it
fell back to the longer filename.
Secondly, the file part of an url is frequently not very descriptive on its
own.
The uri scheme, auth, and port is intentionally left out, as clutter.
Using a single strictness annotation, in just the right place.
Tried several others, none of which helped and some of which potentially
hurt. This is only the second time I've really had to deal with this in
a year of using haskell, which is, I suppose not that bad.
when a git repository is first being created. Clones will automatically
notice that git-annex is in use and automatically perform a basic
initalization. It's still recommended to run "git annex init" in any
clones, to describe them.
The tricky part about this is that to generate a key, the file must be
present already. Worked around by adding (back) an URL key type, which
is used for addurl --fast.
This was more complex than would be expected. unannex has to use git commit -a
since it's removing files from git; git commit filelist won't do.
Allow commands to be added to the Git queue that have no associated files,
and run such commands once.
The only remaining vestiage of backends is different types of keys. These
are still called "backends", mostly to avoid needing to change user interface
and configuration. But everything to do with storing keys in different
backends was gone; instead different types of remotes are used.
In the refactoring, lots of code was moved out of odd corners like
Backend.File, to closer to where it's used, like Command.Drop and
Command.Fsck. Quite a lot of dead code was removed. Several data structures
became simpler, which may result in better runtime efficiency. There should
be no user-visible changes.
That sucking sound is a whole page of code vanishing to be replaced with
return . catMaybes . map (logFileKey . takeFileName) =<< Branch.files
What can I say, git is my database, and haskell my copilot.
Do not set annex.version whenever any command is run. Just do it in init.
This ensures that, if a repo has annex.version=3, it has a git-annex
branch, so we don't have to run a command every time to check for the
branch.
Remove the old ad-hoc logic for v0 and v1, to simplify version checking.
stop changing gitattributes on init
create git-annex branch on init
ugly special case for init in a bare repository goes away, yay!
git annex init is also faster, at least in a large existing repo, as
it does not need to run the slow 'git add'
get not honoring --from has surprised me a few times, so least surprise
suggests it should just behave like copy --from. This leaves the difference
between get and copy being that copy always requires the remote to copy
from, while get will decide whether to get a file from a key/value store or
a remote.
Avoid git reset here too, so I no longer need to care that it's much more
expensive than seems wise (but I asked the git list about that anyway).
It's not necessary to reset the staged file content from the index, as
the `git add` of the the symlink will replace it anyway.
`git commit` of unlocked files is still slow, since git still has to shove
their entire content into the index, only to have it be thrown away. So it's
still better to use `git annex add`
This was a real PITA to fix, since location logs can be staged in
both the current repo, as well as in local remote's repos, in
which case the cwd will not be in the repo. And git add needs different
params in both cases, when absolute paths are not used.
In passing, git annex fsck now stages location log fixes.
Since the queue is flushed in between subcommand actions being run,
there should be no issues with actions that expect to queue up some stuff
and have it run after they do other stuff. So I didn't have to audit for
such assumptions.
For example, this could happen if using SHA1 and a file with content
"foo" were added to that backend. Then a file with "content" foo were
migrated from the WORM backend.
Assume that, if a backend assigned the same key, the already annexed
content must be the same. So, the "old" content can be reused.
Add --fast flag, that can enable less expensive, but also less thurough versions of some commands.
* Add --fast flag, that can enable less expensive, but also less thurough
versions of some commands.
* fsck: In fast mode, avoid checking checksums.
* unused: In fast mode, just show all existing temp files as unused,
and avoid expensive scan for other unused content.
Free space checking is now done, for transfers of data for keys that have free space metadata.
(Notably, not for SHA* keys generated with git-annex 0.24 or earlier.)
The code is believed to work on Linux, FreeBSD, and OSX; check compile-time
messages to see if it is not enabled for your OS.
It compiles. It sorta works. Several subcommands are FIXME marked and
broken, because things that used to accept separate --backend and --key
params need to be changed to accept just a --key that encodes all the key
info, now that there is metadata in keys.