When an automatic upgrade completes, or when the user clicks on the upgrade
button in one webapp, but also has it open in another browser window/tab,
we have a problem: The current web server is going to stop running in
minutes, but there is no way to send a redirect to the web browser to the
new url.
To solve this, used long polling, so the webapp is always listening for
urls it should redirect to. This allows globally redirecting every open
webapp. Works great! Tested with 2 web browsers with 2 tabs each.
May be useful for other purposes later too, dunno.
The overhead is 2 http requests per page load in the webapp. Due to yesod's
speed, this does not seem to noticibly delay it. Only 1 of the requests
could possibly block the page load, the other is async.
Made alerts be able to have multiple buttons, so the alerts about upgrading
can have a button that enables automatic upgrades.
Implemented automatic upgrading when the program file has changed.
Note that when an automatic upgrade happens, the webapp displays an alert
about it for a few minutes, and then closes. This still needs work.
The webapp will check twice a day, when the network is connected, to see if
it can download a distributon upgrade file. If a newer version is found,
display an upgrade alert.
This will need the autobuilders to set UPGRADE_LOCATION to the url
it can be downloaded from when building git-annex. Only builds with that
set need automatic upgrade alerts.
Currently, the upgrade page just requests the user manually download
and upgrade it. But, all the info is provided to do automated upgrades
in the future.
Note that urls used will need to all be https.
This commit was sponsored by Dirk Kraft.
Complicated by such repositories potentially being repos that should have
an annex.uuid, but it failed to be gotten, perhaps due to the past ssh repo
setup bugs. This is handled now by an Upgrade Repository button.
When starting up the assistant, it'll remind about the current
repository, if it doesn't have checks. And when a removable drive
is plugged in, it will remind if a repository on it lacks checks.
Since that might be annoying, the reminders can be turned off.
This commit was sponsored by Nedialko Andreev.
Once I built the basic widget, it turned out to be rather easy to replicate
it once per scheduled activity and wire it all up to a fully working UI.
This does abuse yesod's form handling a bit, but I think it's ok.
And it would be nice to have it all ajax-y, so that saving one modified
form won't lose any modifications to other forms. But for now, a nice
simple 115 line of code implementation is a win.
This late night hack session commit was sponsored by Andrea Rota.
However, this is not working for gcrypt repos with a mangled hostname.
Problem is that the locked down key is installed before the repo is
initialized, so git-annex-shell refuses to allow the gcrypt special remote
to do its setup.
Improved probing the remote server, so it gathers a list of the
capabilities it has. From that list, we can determine which types
of remotes are supported, and display an appropriate UI.
The new buttons for making gcrypt repos don't work yet, but the old buttons
for unencrypted git repo and encrypted rsync repo have been adapted to the
new data types and are working.
This commit was sponsored by David Schmitt.
This happened because the transferrer process did not know about the new
remote. remoteFromUUID crashed, which crashed the transferrer. When it was
restarted, the new one knew about the new remote so all further files would
transfer, but the one file would temporarily not be, until transfers retried.
Fixed by making remoteFromUUID not crash, and try reloading the remote list
if it does not know about a remote.
Note that this means that remoteFromUUID does not only return Nothing anymore
when the UUID is the UUID of the local repository. So had to change some code
that dependend on that assumption.
Overridable with --user-agent option.
Not yet done for S3 or WebDAV due to limitations of libraries used --
nether allows a user-agent header to be specified.
This commit sponsored by Michael Zehrer.
This pulls off quite a nice trick: When given a path on rsync.net, it
determines if it is an encrypted git repository that the user has
the key to decrypt, and merges with it. This is works even when
the local repository had no idea that the gcrypt remote exists!
(As previously done with local drives.)
This commit sponsored by Pedro Côrte-Real
Now can tell if a repo uses gcrypt or not, and whether it's decryptable
with the current gpg keys.
This closes the hole that undecryptable gcrypt repos could have before been
combined into the repo in encrypted mode.
When adding a removable drive, it's now detected if the drive contains
a gcrypt special remote, and that's all handled nicely. This includes
fetching the git-annex branch from the gcrypt repo in order to find
out how to set up the special remote.
Note that gcrypt repos that are not git-annex special remotes are not
supported. It will attempt to detect such a gcrypt repo and refuse
to use it. (But this is hard to do any may fail; see
https://github.com/blake2-ppc/git-remote-gcrypt/issues/6)
The problem with supporting regular gcrypt repos is that we don't know
what the gcrypt.participants setting is intended to be for the repo.
So even if we can decrypt it, if we push changes to it they might not be
visible to other participants.
Anyway, encrypted sneakernet (or mailnet) is now fully possible with the
git-annex assistant! Assuming that the gpg key distribution is handled
somehow, which the assistant doesn't yet help with.
This commit was sponsored by Navishkar Rao.
Now the webapp can generate a gpg key that is dedicated for use by
git-annex. Since the key is single use, much of the complexity of
generating gpg keys is avoided.
Note that the key has no password, because gpg-agent is not available
everywhere the assistant is installed. This is not a big security problem
because the key is going to live on the same disk as the git annex
repository, so an attacker with access to it can look directly in the
repository to see the same files that get stored in the encrypted
repository on the removable drive.
There is no provision yet for backing up keys.
This commit sponsored by Robert Beaty.
I noticed that adding a removable drive repo, then trying to add the same
drive again resulted in the question about whether repos should be
combined. This was because the uuid.log was not updated. Which happened
because the new uuid did not get committed on the removable drive.
This fixes that.
The ssh setup first runs ssh to the real hostname, to probe if a ssh key is
needed. If one is, it generates a mangled hostname that uses a key. This
mangled hostname was being used to ssh into the server to set up the key.
But if the server already had the key set up, and it was locked down, the
setup would fail. This changes it to use the real hostname when sshing in
to set up the key, which avoids the problem.
Note that it will redundantly set up the key on the ssh server. But it's
the same key; the ssh key generation code uses the key if it already
exists.