I anticipate lots of external special remote programs will neglect
implementing this. Still, it's the right thing to do to assume that some
of them may write files out of order. Probably most external special
remotes will not be used with a proxy. When someone is using one with a
proxy, they can always get it fixed to send ORDERED.
The problem was that when the proxy requests a key be retrieved to its
own temp file, fileRetriever was retriving it to the key's temp
location, and then moving it at the end, which broke streaming.
So, plumb through the path where the key is being retrieved to.
Had to add Read instances to Key and NumCopies and some other similar
types. I only expect to use those in serializing a sim. Of course, this
risks that implementation changes break reading old data. For a sim,
that would not be a big problem.
Not tested yet. This emulates the same checking that is done when
dropping. Note that when dropping from a special remote it is not able
to make a locked copy.
Detect when a preferred content expression contains "not present", which
would lead to repeatedly getting and then dropping files, and make it never
match. This also applies to "not balanced" and "not sizebalanced".
--explain will tell the user when this happens
Note that getMatcher calls matchMrun' and does not check for unstable
negated limits. While there is no --present anyway, if there was,
it would not make sense for --not --present to complain about
instability and fail to match.
Reorganized the reposize database directory, and split up a column.
checkStaleSizeChanges needs to run before needLiveUpdate,
otherwise the process won't be holding a lock on its pid file, and
another process could go in and expire the live update it records. It
just so happens that they do get called in the correct order, since
checking balanced preferred content calls getLiveRepoSizes before
needLiveUpdate.
The 1 minute delay between checks is arbitrary, but will avoid excess
work. The downside of it is that, if a process is dropping a file and
gets interrupted, for 1 minute another process can expect a repository
will soon be smaller than it is. And so a process might send data to a
repository when a file is not really going to be dropped from it. But
note that can already happen if a drop takes some time in eg locking and
then fails. So it seems possible that live updates should only be
allowed to increase, rather than decrease the size of a repository.
Only when the preferred content expression being matched uses balanced
preferred content is this overhead needed.
It might be possible to eliminate the locking entirely. Eg, check the
live changes before and after the action and re-run if they are not
stable. For now, this is good enough, it avoids existing preferred
content getting slow. If balanced preferred content turns out to be too
slow to check, that could be tried later.
Fixed successfullyFinishedLiveSizeChange to not update the rolling total
when a redundant change is in RecentChanges.
Made setRepoSizes clear RecentChanges that are no longer needed.
It might be possible to clear those earlier, this is only a convenient
point to do it.
The reason it's safe to clear RecentChanges here is that, in order for a
live update to call successfullyFinishedLiveSizeChange, a change must be
made to a location log. If a RecentChange gets cleared, and just after
that a new live update is started, making the same change, the location
log has already been changed (since the RecentChange exists), and
so when the live update succeeds, it won't call
successfullyFinishedLiveSizeChange. The reason it doesn't
clear RecentChanges when there is a reduntant live update is because
I didn't want to think through whether or not all races are avoided in
that case.
The rolling total in SizeChanges is never cleared. Instead,
calcJournalledRepoSizes gets the initial value of it, and then
getLiveRepoSizes subtracts that initial value from the current value.
Since the rolling total can only be updated by updateRepoSize,
which is called with the journal locked, locking the journal in
calcJournalledRepoSizes ensures that the database does not change while
reading the journal.
When finishedLiveUpdate was run on a different key than expected, it
blocked forever waiting for an indication the database had been updated.
Since the journal is locked when finishedLiveUpdate runs, this could
also have caused other git-annex commands to hang.
When a live size change completes successfully, the same transaction
that removes it from the database updates the rolling total for its
repository.
The idea is that when RepoSizes is read, SizeChanges will be as
well, and cached locally. Any time a change is made, the local cache
will be updated. So by comparing the local cache with the current
SizeChanges, it can learn about size changes that were made by other
processes. Then read the LiveSizeChanges, and add that in to get a live
picture of the current sizes.
Also added a SizeChangeId. This allows 2 different threads, or
processes, to both record a live size change for the same repo and key,
and update their own information without stepping on one-another's toes.
I've tested the behavior of the thread that waits for the LiveUpdate to
be finished, and it does get signaled and exit cleanly when the
LiveUpdate is GCed instead.
Made finishedLiveUpdate wait for the thread to finish updating the
database.
There is a case where GC doesn't happen in time and the database is left
with a live update recorded in it. This should not be a problem as such
stale data can also happen when interrupted and will need to be detected
when loading the database.
Balanced preferred content expressions now call startLiveUpdate.
Each command that first checks preferred content (and/or required
content) and then does something that can change the sizes of
repositories needs to call prepareLiveUpdate, and plumb it through the
preferred content check and the location log update.
So far, only Command.Drop is done. Many other commands that don't need
to do this have been updated to keep working.
There may be some calls to NoLiveUpdate in places where that should be
done. All will need to be double checked.
Not currently in a compilable state.
The idea is that upon a merge of the git-annex branch, or a commit to
the git-annex branch, the reposize database will be updated. So it
should always accurately reflect the location log sizes, but it will
often be behind the actual current sizes.
Annex.reposizes will start with the value from the database, and get
updated with each transfer, so it will reflect a process's best
understanding of the current sizes.
When there are multiple processes all transferring to the same repo,
Annex.reposize will not reflect transfers made by the other processes
since the current process started. So when using balanced preferred
content, it may make suboptimal choices, including trying to transfer
content to the repo when another process has already filled it up.
But this is the same as if there are multiple processes running on
ifferent machines, so is acceptable. The reposize will eventually
get an accurate value reflecting changes made by other processes or in
other repos.
This deals with the possible security problem that someone could make an
unusually low UUID and generate keys that are all constructed to hash to
a number that, mod the number of repositories in the group, == 0.
So balanced preferred content would always put those keys in the
repository with the low UUID as long as the group contains the
number of repositories that the attacker anticipated.
Presumably the attacker than holds the data for ransom? Dunno.
Anyway, the partial solution is to use HMAC (sha256) with all the UUIDs
combined together as the "secret", and the key as the "message". Now any
change in the set of UUIDs in a group will invalidate the attacker's
constructed keys from hashing to anything in particular.
Given that there are plenty of other things someone can do if they can
write to the repository -- including modifying preferred content so only
their repository wants files, and numcopies so other repositories drom
them -- this seems like safeguard enough.
Note that, in balancedPicker, combineduuids is memoized.
This removes versionedExport, which was only used by the S3 special
remote. Instead, versionedexport=yes is a common way for remotes to
indicate that they are versioned.
This handles the workflow where the branch is first pushed to the proxy,
and then files in the exported tree are later are copied to the proxied remote.
Turns out that the way the export log is structured, nothing needs
to be done to finalize the export once the last key is sent to it. Which
is great because that would have been a lot of complication. On
receiving the push, Command.Export runs and calls recordExportBeginning,
does as much as it can to update the export with the files currently
on it, and then calls recordExportUnderway. At that point, the
export.log records the export as "complete", but it's not really. And
that's fine. The same happens when using `git-annex export` when some
files are not available to send. Other repositories that have
access to the special remote can already retrieve files from it. As
the missing files get copied to the exported remote, all that needs
to be done is record each in the export db.
At this point, proxying to exporttree=yes annexobjects=yes special remotes
is fully working. Except for in the case where multiple files in the
tree use the same key, and the files are sent to the proxied remote
before pushing the tree.
It seems that even special remotes without annexobjects=yes will work if
used with the workflow where the git-annex branch is pushed before
copying files. But not with the `git-annex push` workflow.
Enough to let lockcontent routes be included and servant-client be used.
But not enough to use servant-client with those routes. May need to
implement a separate runner for that part of the protocol?
Also some misc other stuff needed to use servant-client.
And fix exposing of UUID in the JSON types. UUID does actually have
aeson instances, but they're used elsewhere (metadata --batch, although
only included to get it to compile, not actually used in there) and not
suitable for use here since this must work with every possible UUID.
Added Maybe POSIXTime to SafeDropProof, which gets set when the proof is
based on a LockedCopy. If there are several LockedCopies, it uses the
closest expiry time. That is not optimal, it may be that the proof
expires based on one LockedCopy but another one has not expired. But
that seems unlikely to really happen, and anyway the user can just
re-run a drop if it fails due to expiry.
Pass the SafeDropProof to removeKey, which is responsible for checking
it for expiry in situations where that could be a problem. Which really
only means in Remote.Git.
Made Remote.Git check expiry when dropping from a local remote.
Checking expiry when dropping from a P2P remote is not yet implemented.
P2P.Protocol.remove has SafeDropProof plumbed through to it for that
purpose.
Fixing the remaining 2 build warnings should complete this work.
Note that the use of a POSIXTime here means that if the clock gets set
forward while git-annex is in the middle of a drop, it may say that
dropping took too long. That seems ok. Less ok is that if the clock gets
turned back a sufficient amount (eg 5 minutes), proof expiry won't be
noticed. It might be better to use the Monotonic clock, but that doesn't
advance when a laptop is suspended, and while there is the linux
Boottime clock, that is not available on other systems. Perhaps a
combination of POSIXTime and the Monotonic clock could detect laptop
suspension and also detect clock being turned back?
There is a potential future flag day where
p2pDefaultLockContentRetentionDuration is not assumed, but is probed
using the P2P protocol, and peers that don't support it can no longer
produce a LockedCopy. Until that happens, when git-annex is
communicating with older peers there is a risk of data loss when
a ssh connection closes during LOCKCONTENT.
Walking a tightrope between security and convenience here, because
git-annex-shell needs to only proxy for things when there has been
an explicit, local action to configure them.
In this case, the user has to have run `git-annex extendcluster`,
which now sets annex-cluster-gateway on the remote.
Note that any repositories that the gateway is recorded to
proxy for will be proxied onward. This is not limited to cluster nodes,
because checking the node log would not add any security; someone could
add any uuid to it. The gateway of course then does its own
checking to determine if it will allow proxying for the remote.
Avoid `git-annex sync --content` etc from operating on cluster nodes by default
since syncing with a cluster implicitly syncs with its nodes. This avoids a
lot of unncessary work when a cluster has a lot of nodes just in checking
if each node's preferred content is satisfied. And it avoids content
being sent to nodes individually, so instead syncing with clusters always
fanout uploads to nodes.
The downside is that there are situations where a cluster's preferred content
settings can be met, but those of its nodes are not. Or where a node does not
contain a key, but the cluster does, and there are not enough copies of the key
yet, so it would be desirable the send it there. I think that's an acceptable
tradeoff. These kind of situations are ones where the cluster itself should
probably be responsible for copying content to the node. Which it can do much
less expensively than a client can. Part of the balanced preferred content
design that I will be working on in a couple of months involves rebalancing
clusters, so I expect to revisit this.
The use of annex-sync config does allow running git-annex sync with a specific
node, or nodes, and it will sync with it. And it's also possible to set
annex-sync git configs to make it sync with a node by default. (Although that
will require setting up an explicit git remote for the node rather than relying
on the proxied remote.)
Logs.Cluster.Basic is needed because Remote.Git cannot import Logs.Cluster
due to a cycle. And the Annex.Startup load of clusters happens
too late for Remote.Git to use that. This does mean one redundant load
of the cluster log, though only when there is a proxy.
This makes git-annex sync and similar not treat proxied remotes as git
syncable remotes.
Also, display in git-annex info remote when the remote is proxied.
Loading the remote list a second time was removing all proxied remotes.
That happened because setting up the proxied remote added some config
fields to the in-memory git config, and on the second load, it saw those
configs and decided not to overwrite them with the proxy.
Now on the second load, that still happens. But now, the proxied
git configs are used to generate a remote same as if those configs were
all set. The reason that didn't happen before was twofold,
the gitremotes cache was not dropped, and the remote's url field was not
set correctly.
The problem with the remote's url field is that while it was marked as
proxy inherited, all other proxy inherited fields are annex- configs.
And the code to inherit didn't work for the url field.
Now it all works, but git-annex sync is left running git push/pull on
the proxied remote, which doesn't work. That still needs to be fixed.
Client side support for SUCCESS-PLUS and ALREADY-HAVE-PLUS
is complete, when a PUT stores to additional repositories
than the expected on, the location log is updated with the
additional UUIDs that contain the content.
Started implementing PUT fanout to multiple remotes for clusters.
It is untested, and I fear fencepost errors in the relative
offset calculations. And it is missing proxying for the protocol
after DATA.
This is to avoid inserting a cluster uuid into the location log when
only dead nodes in the cluster contain the content of a key.
One reason why this is necessary is Remote.keyLocations, which excludes
dead repositories from the list. But there are probably many more.
Implementing this was challenging, because Logs.Location importing
Logs.Cluster which imports Logs.Trust which imports Remote.List resulted
in an import cycle through several other modules.
Resorted to making Logs.Location not import Logs.Cluster, and instead
it assumes that Annex.clusters gets populated when necessary before it's
called.
That's done in Annex.Startup, which is run by the git-annex command
(but not other commands) at early startup in initialized repos. Or,
is run after initialization.
Note that is Remote.Git, it is unable to import Annex.Startup, because
Remote.Git importing Logs.Cluster leads the the same import cycle.
So ensureInitialized is not passed annexStartup in there.
Other commands, like git-annex-shell currently don't run annexStartup
either.
So there are cases where Logs.Location will not see clusters. So it won't add
any cluster UUIDs when loading the log. That's ok, the only reason to do
that is to make display of where objects are located include clusters,
and to make commands like git-annex get --from treat keys as being located
in a cluster. git-annex-shell certainly does not do anything like that,
and I'm pretty sure Remote.Git (and callers to Remote.Git.onLocalRepo)
don't either.
A cluster UUID is a version 8 UUID, with first octets 'a' and 'c'.
The rest of the content will be random.
This avoids a class of attack where the UUID of a repository is used as
the UUID of a cluster, which will prevent git-annex from updating
location logs for that repository. I don't know why someone would want
to do that, but let's prevent it.
Also, isClusterUUID make it easy to filter out cluster UUIDs when
writing the location logs.
Not used yet. (Or tested.)
I did consider making the log start with the uuid of the node, followed
by the cluster uuid (or uuids). That would perhaps mean a smaller write
to the git-annex branch when adding a node, but overall the log file
would be larger, and it will be read and cached near to startup on most
git-annex runs.
Since a proxied remote uses the proxy's git repo, this makes sense.
Although I don't think this config is ever used when accessing a remote
via git-annex-shell.