Removed instance, got it all to build using fromRef. (With a few things
that really need to show something using a ref for debugging stubbed out.)
Then added back Read instance, and made Logs.View use it for serialization.
This changes the view log format.
(And a vpop command, which is still a bit buggy.)
Still need to do vadd and vrm, though this also adds their documentation.
Currently not very happy with the view log data serialization. I had to
lose the TDFA regexps temporarily, so I can have Read/Show instances of
View. I expect the view log format will change in some incompatable way
later, probably adding last known refs for the parent branch to View
or something like that.
Anyway, it basically works, although it's a bit slow looking up the
metadata. The actual git branch construction is about as fast as it can be
using the current git plumbing.
This commit was sponsored by Peter Hogg.
Promosing work toward metadata driven filter branches. A few methods
to construct them are stubbed out; all the data types and pure code
seems good.
This commit was sponsored by Walter Somerville.
This is no longer necessary, at least with msysgit 1.8.5.2.msysgit.0.
Its root cause may have been fixed by other recent git path fixes.
It was causing the webapp to fail to make repos on other drives.
Note that on Windows a remote with a path like /home/foo/bar
is interpreted by git as being some screwy relative path (relative to what
exactly seems ill-defined -- it seemed relative to C:\Program Files\Git\ in
my tests!) So no attempt has been made to handle such a path sanely, just not
to crash when encountering it.
Note that "C:\\foo" </> "/home/foo/bar" yields /home/foo/bar even though
that is not absolute! I don't know what to make of all this,
except that I will be very happy when this crock of **** vanishes from
the face of the earth.
Fixes a test case I received where a corrupted repo was repaired, but the
git-annex branch was not. The root of the problem was that the
MissingObject returned by the repair code was not necessarily a complete
set of all objects that might have been deleted during the repair.
So, stop trying to return that at all, and instead make the index file
checking code explicitly verify that each object the index uses is present.
The assistant's commit code also always avoids git commit, for simplicity.
Indirect mode sync still does a git commit -a to catch unstaged changes.
Note that this means that direct mode sync no longer runs the pre-commit
hook or any other hooks git commit might call. The git annex pre-commit
hook action for direct mode is however explicitly run. (The assistant
already ran git commit with hooks disabled, so no change there.)
Complicated by such repositories potentially being repos that should have
an annex.uuid, but it failed to be gotten, perhaps due to the past ssh repo
setup bugs. This is handled now by an Upgrade Repository button.
This works for both direct and indirect mode.
It may need some performance tuning.
Note that unlike git status, it only shows the status of the work tree, not
the status of the index. So only one status letter, not two .. and since
files that have been added and not yet committed do not differ between the
work tree and the index, they are not shown. Might want to add display of
the index vs the last commit eventually.
This commit was sponsored by an unknown bitcoin contributor, whose
contribution as been going up lately! ;)
Now that direct mode sets core.bare=true, git's normal prohibition about
pushing into the currently checked out branch doesn't work.
A simple fix for this would be an update hook which blocks the pushes..
but git hooks must be executable, and git-annex needs to be usable on eg,
FAT, which lacks x bits.
Instead, enabling direct mode switches the branch (eg master) to a special
purpose branch (eg annex/direct/master). This branch is not pushed when
syncing; instead any changes that git annex sync commits get written to
master, and it's pushed (along with synced/master) to the remote.
Note that initialization has been changed to always call setDirect,
even if it's just setDirect False for indirect mode. This is needed because
if the user has just cloned a direct mode repo, that nothing has synced
with before, it may have no master branch, and only a annex/direct/master.
Resulting in that branch being checked out locally too. Calling setDirect False
for indirect mode moves back out of this branch, to a new master branch,
and ensures that a manual "git push" doesn't push changes directly to
the annex/direct/master of the remote. (It's possible that the user
makes a commit w/o using git-annex and pushes it, but nothing I can do
about that really.)
This commit was sponsored by Jonathan Harrington.
The -c option now not only modifies the git configuration seen by
git-annex, but it is passed along to every git command git-annex runs.
This was easy to plumb through because gitCommandLine is already used to
construct every git command line, to add --git-dir and --work-tree
Oh, git, you made this so hard. Not determining if a branch pointed to some
corrupt object, that was easy, but dealing with corrupt branches using git
plumbing is a PITA.
I have not actually tested with 1.8.5, which is not yet relesaed, but
git.git commit f7cd8c50b9ab83e084e8f52653ecc8d90665eef2 changes -z
to also apply to output, without regards to back-compat. (But with pretty
good reasons.)
New code should work with both versions, by fingerprinting for NULs and
newlines.
gcrypt needs to be able to fast-forward the master branch. If a git
repository is set up with git init --shared --bare, it gets that set, and
pushing to it will then fail, even when it's up-to-date.
I forgot I had <$$> hidden away in Utility.Applicative.
It allows doing the same kind of currying as does >=*>
and I found using it made the code more readable for me.
(*>=> was not used)
This pulls off quite a nice trick: When given a path on rsync.net, it
determines if it is an encrypted git repository that the user has
the key to decrypt, and merges with it. This is works even when
the local repository had no idea that the gcrypt remote exists!
(As previously done with local drives.)
This commit sponsored by Pedro Côrte-Real
This is a massive win on OSX, which doesn't have a sha256sum normally.
Only use external hash commands when the file is > 1 mb,
since cryptohash is quite close to them in speed.
SHA is still used to calculate HMACs. I don't quite understand
cryptohash's API for those.
Used the following benchmark to arrive at the 1 mb number.
1 mb file:
benchmarking sha256/internal
mean: 13.86696 ms, lb 13.83010 ms, ub 13.93453 ms, ci 0.950
std dev: 249.3235 us, lb 162.0448 us, ub 458.1744 us, ci 0.950
found 5 outliers among 100 samples (5.0%)
4 (4.0%) high mild
1 (1.0%) high severe
variance introduced by outliers: 10.415%
variance is moderately inflated by outliers
benchmarking sha256/external
mean: 14.20670 ms, lb 14.17237 ms, ub 14.27004 ms, ci 0.950
std dev: 230.5448 us, lb 150.7310 us, ub 427.6068 us, ci 0.950
found 3 outliers among 100 samples (3.0%)
2 (2.0%) high mild
1 (1.0%) high severe
2 mb file:
benchmarking sha256/internal
mean: 26.44270 ms, lb 26.23701 ms, ub 26.63414 ms, ci 0.950
std dev: 1.012303 ms, lb 925.8921 us, ub 1.122267 ms, ci 0.950
variance introduced by outliers: 35.540%
variance is moderately inflated by outliers
benchmarking sha256/external
mean: 26.84521 ms, lb 26.77644 ms, ub 26.91433 ms, ci 0.950
std dev: 347.7867 us, lb 210.6283 us, ub 571.3351 us, ci 0.950
found 6 outliers among 100 samples (6.0%)
import Crypto.Hash
import Data.ByteString.Lazy as L
import Criterion.Main
import Common
testfile :: FilePath
testfile = "/run/shm/data" -- on ram disk
main = defaultMain
[ bgroup "sha256"
[ bench "internal" $ whnfIO internal
, bench "external" $ whnfIO external
]
]
sha256 :: L.ByteString -> Digest SHA256
sha256 = hashlazy
internal :: IO String
internal = show . sha256 <$> L.readFile testfile
external :: IO String
external = do
s <- readProcess "sha256sum" [testfile]
return $ fst $ separate (== ' ') s
Done using a mode witness, which ensures it's fixed everywhere.
Fixing catFileKey was a bear, because git cat-file does not provide a
nice way to query for the mode of a file and there is no other efficient
way to do it. Oh, for libgit2..
Note that I am looking at tree objects from HEAD, rather than the index.
Because I cat-file cannot show a tree object for the index.
So this fix is technically incomplete. The only cases where it matters
are:
1. A new large file has been directly staged in git, but not committed.
2. A file that was committed to HEAD as a symlink has been staged
directly in the index.
This could be fixed a lot better using libgit2.
Now can tell if a repo uses gcrypt or not, and whether it's decryptable
with the current gpg keys.
This closes the hole that undecryptable gcrypt repos could have before been
combined into the repo in encrypted mode.
When adding a removable drive, it's now detected if the drive contains
a gcrypt special remote, and that's all handled nicely. This includes
fetching the git-annex branch from the gcrypt repo in order to find
out how to set up the special remote.
Note that gcrypt repos that are not git-annex special remotes are not
supported. It will attempt to detect such a gcrypt repo and refuse
to use it. (But this is hard to do any may fail; see
https://github.com/blake2-ppc/git-remote-gcrypt/issues/6)
The problem with supporting regular gcrypt repos is that we don't know
what the gcrypt.participants setting is intended to be for the repo.
So even if we can decrypt it, if we push changes to it they might not be
visible to other participants.
Anyway, encrypted sneakernet (or mailnet) is now fully possible with the
git-annex assistant! Assuming that the gpg key distribution is handled
somehow, which the assistant doesn't yet help with.
This commit was sponsored by Navishkar Rao.
This is a git-remote-gcrypt encrypted special remote. Only sending files
in to the remote works, and only for local repositories.
Most of the work so far has involved making initremote work. A particular
problem is that remote setup in this case needs to generate its own uuid,
derivied from the gcrypt-id. That required some larger changes in the code
to support.
For ssh remotes, this will probably just reuse Remote.Rsync's code, so
should be easy enough. And for downloading from a web remote, I will need
to factor out the part of Remote.Git that does that.
One particular thing that will need work is supporting hot-swapping a local
gcrypt remote. I think it needs to store the gcrypt-id in the git config of the
local remote, so that it can check it every time, and compare with the
cached annex-uuid for the remote. If there is a mismatch, it can change
both the cached annex-uuid and the gcrypt-id. That should work, and I laid
some groundwork for it by already reading the remote's config when it's
local. (Also needed for other reasons.)
This commit was sponsored by Daniel Callahan.
Instead of populating the second-level Bloom filter with every key
referenced in every Git reference, consider only those which differ
from what's referenced in the index.
Incidentaly, unlike with its old behavior, staged
modifications/deletion/... will now be detected by 'unused'.
Credits to joeyh for the algorithm. :-)