So, it will pull and push the original branch, not the adjusted one.
And, for merging, it will use updateAdjustedBranch (not implemented yet).
Note that remaining uses of Git.Branch.current need to be checked too;
for things that should act on the original branch, and not the adjusted
branch.
"git annex adjust" may be a temporary interface, but works for a proof of
concept.
It is pretty fast at creating the adjusted branch. The main overhead is
injecting pointer files. It might be worth optimising that by reusing the
symlink target as the pointer file content. When I tried to do that,
the problem was that the clean filter doesn't use that same format, and so
git thought files had changed. Could be dealt with, perhaps make the clean
filter use symlink format for pointer files when on an adjusted branch?
But the real overhead is in checking out the branch, when git runs the
smudge filter once per file. That is perhaps too slow to be usable,
although it may only affect initial checkout of the branch, and not
updates. TBD.
* add, addurl, import, importfeed: When in a v6 repository on a crippled
filesystem, add files unlocked.
* annex.addunlocked: New configuration setting, makes files always be
added unlocked. (v6 only)
The type checker should have noticed this, but the changes to mapM
that make it accept any Traversable hid the fact that it was not being
passed a list at all. Thus, what should have returned an empty list most
of the time instead returned [""] which was treated as the name of the
associated file, with disasterout consequences.
When I have time, I should add a test case checking what sync --content
drops. I should also consider replacing mapM with one re-specialized to
lists.
* Removed the webapp-secure build flag, rolling it into the webapp build
flag.
* Removed the quvi and tahoe build flags, which only adds aeson to
the core dependencies.
* Removed the feed build flag, which only adds feed to the core
dependencies.
Build flags have cost in both code complexity and also make Setup configure
have to work harder to find a usable set of build flags when some
dependencies are missing.
This allows things like Command.Find to use noMessages and generate their
own complete json objects. Previouly, Command.Find managed that only via a
hack, which wasn't compatable with batch mode.
Only Command.Find, Command.Smudge, and Commange.Status use noMessages
currently, and none except for Command.Find are impacted by this change.
Fixes find --json --batch output
The benchmark shows that the database access is quite fast indeed!
And, it scales linearly to the number of keys, with one exception,
getAssociatedKey.
Based on this benchmark, I don't think I need worry about optimising
for cases where all files are locked and the database is mostly empty.
In those cases, database access will be misses, and according to this
benchmark, should add only 50 milliseconds to runtime.
(NB: There may be some overhead to getting the database opened and locking
the handle that this benchmark doesn't see.)
joey@darkstar:~/src/git-annex>./git-annex benchmark
setting up database with 1000
setting up database with 10000
benchmarking keys database/getAssociatedFiles from 1000 (hit)
time 62.77 μs (62.70 μs .. 62.85 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 62.81 μs (62.76 μs .. 62.88 μs)
std dev 201.6 ns (157.5 ns .. 259.5 ns)
benchmarking keys database/getAssociatedFiles from 1000 (miss)
time 50.02 μs (49.97 μs .. 50.07 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 50.09 μs (50.04 μs .. 50.17 μs)
std dev 206.7 ns (133.8 ns .. 295.3 ns)
benchmarking keys database/getAssociatedKey from 1000 (hit)
time 211.2 μs (210.5 μs .. 212.3 μs)
1.000 R² (0.999 R² .. 1.000 R²)
mean 211.0 μs (210.7 μs .. 212.0 μs)
std dev 1.685 μs (334.4 ns .. 3.517 μs)
benchmarking keys database/getAssociatedKey from 1000 (miss)
time 173.5 μs (172.7 μs .. 174.2 μs)
1.000 R² (0.999 R² .. 1.000 R²)
mean 173.7 μs (173.0 μs .. 175.5 μs)
std dev 3.833 μs (1.858 μs .. 6.617 μs)
variance introduced by outliers: 16% (moderately inflated)
benchmarking keys database/getAssociatedFiles from 10000 (hit)
time 64.01 μs (63.84 μs .. 64.18 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 64.85 μs (64.34 μs .. 66.02 μs)
std dev 2.433 μs (547.6 ns .. 4.652 μs)
variance introduced by outliers: 40% (moderately inflated)
benchmarking keys database/getAssociatedFiles from 10000 (miss)
time 50.33 μs (50.28 μs .. 50.39 μs)
1.000 R² (1.000 R² .. 1.000 R²)
mean 50.32 μs (50.26 μs .. 50.38 μs)
std dev 202.7 ns (167.6 ns .. 252.0 ns)
benchmarking keys database/getAssociatedKey from 10000 (hit)
time 1.142 ms (1.139 ms .. 1.146 ms)
1.000 R² (1.000 R² .. 1.000 R²)
mean 1.142 ms (1.140 ms .. 1.144 ms)
std dev 7.142 μs (4.994 μs .. 10.98 μs)
benchmarking keys database/getAssociatedKey from 10000 (miss)
time 1.094 ms (1.092 ms .. 1.096 ms)
1.000 R² (1.000 R² .. 1.000 R²)
mean 1.095 ms (1.095 ms .. 1.097 ms)
std dev 4.277 μs (2.591 μs .. 7.228 μs)
Linking the file to the tmp dir was not necessary in the clean
filter, and it caused the ctime to change, which caused git to think
the file was changed. This caused git status to get slow as it kept
re-cleaning unchanged files.
03cb2c8ece put a cat-file into the fast
bloomfilter generation path. Instead, add another bloom filter which diffs
from the work tree to the index.
Also, pull the sha of the changed object out of the diffs, and cat that
object directly, rather than indirecting through the filename.
Finally, removed some hacks that are unncessary thanks to the worktree to
index diff.
So, we need to look at both the file on disk to see if it's a annex link,
and the file in the index too. lookupFile doesn't look in the index if the file
is not present on disk.
In v5, that was not possible, but it is in v6, and so the test was failing.
Investigating, it turns out that locking was copying the pointer file
content to the annex object despite the content not being present. So,
add a check to prevent that.
Fixes several bugs with updates of pointer files. When eg, running
git annex drop --from localremote
it was updating the pointer file in the local repository, not the remote.
Also, fixes drop ../foo when run in a subdir, and probably lots of other
problems. Test suite drops from ~30 to 11 failures now.
TopFilePath is used to force thinking about what the filepath is relative
to.
The data stored in the sqlite db is still just a plain string, and
TopFilePath is a newtype, so there's no overhead involved in using it in
DataBase.Keys.
The smudge filter does need to be run, because if the key is in the local
annex already (due to renaming, or a copy of a file added, or a new file
added and its content has already arrived), git merge smudges the file and
this should provide its content.
This does probably mean that in merge conflict resolution, git smudges the
existing file, re-copying all its content to it, and then the file is
deleted. So, not efficient.
Several tricky parts:
* When the conflict is just between the same key being locked and unlocked,
the unlocked version wins, and the file is not renamed in this case.
* Need to update associated file map when conflict resolution renames
an unlocked file.
* git merge runs the smudge filter on the conflicting file, and actually
overwrites the file with the same content it had before, and so
invalidates its inode cache. This makes it difficult to know when it's
safe to remove such files as conflict cruft, without going so far as to
compare their entire contents.
Dealt with this by preventing the smudge filter from populating the file
when a merge is run. However, that also prevents the smudge filter being
run for non-conflicting files, so eg moving a file won't put its new
content into place.
* Ideally, if a merge or a merge conflict resolution renames an unlocked
file, the file in the work tree can just be moved, rather than copying
the content to a new worktree file.
This is attempted to be done in merge conflict resolution, but
due to git merge's behavior of running smudge filters, what actually
seems to happen is the old worktree file with the content is deleted and
rewritten as a pointer file, so doesn't get reused.
So, this is probably not as efficient as it optimally could be.
If that becomes a problem, could look into running the merge in a separate
worktree and updating the real worktree more efficiently, similarly to the
direct mode merge. However, the direct mode merge had a lot of bugs, and
I'd rather not use that more error-prone method unless really needed.
Decided it's too scary to make v6 unlocked files have 1 copy by default,
but that should be available to those who need it. This is consistent with
git-annex not dropping unused content without --force, etc.
* Added annex.thin setting, which makes unlocked files in v6 repositories
be hard linked to their content, instead of a copy. This saves disk
space but means any modification of an unlocked file will lose the local
(and possibly only) copy of the old version.
* Enable annex.thin by default on upgrade from direct mode to v6, since
direct mode made the same tradeoff.
* fix: Adjusts unlocked files as configured by annex.thin.
The direct flag is also set when sending unlocked content, to support old
versions of git-annex-shell. At some point, the direct flag will be
removed, and only the unlocked flag will be used.
This fixes a race where the modified file ended up in annex/objects, and
the InodeCache stored in the database was for the modified version, so
git-annex didn't know it had gotten modified.
The race could occur when the smudge filter was running; now it gets the
InodeCache before generating the Key, which avoids the race.
The annex object for it may have been modified due to hard link, and
that should be cleaned up when the new version is added. If another
associated file has the old key's content, that's linked into the annex
object. Otherwise, update location log to reflect that content has been
lost.
1. git add file
2. git commit
3. modify file
4. git commit
5. git reset HEAD^
Before this fix, that resulted in git saying the file was modified. And
indeed, it didn't have the content it should in the just checked out ref,
because step 3 modified the object file for the old key.
This only adds 1 stat to each file fscked for locked files, so
added overhead is minimal.
For unlocked files it has to access the database to see if a file
is modified.
If multiple files point to the same annex object, the user may want to
modify them independently, so don't use a hard link.
Also, check diskreserve when copying.