This is certianly a cabal bug for not passing the build options in the
cabal file when building Setup.hs.
And, why oh why did ghc enable this warning by default? So unhappy with
this choice.
This fixes all instances of " \t" in the code base. Most common case
seems to be after a "where" line; probably vim copied the two space layout
of that line.
Done as a background task while listening to episode 2 of the Type Theory
podcast.
Removed old extensible-exceptions, only needed for very old ghc.
Made webdav use Utility.Exception, to work after some changes in DAV's
exception handling.
Removed Annex.Exception. Mostly this was trivial, but note that
tryAnnex is replaced with tryNonAsync and catchAnnex replaced with
catchNonAsync. In theory that could be a behavior change, since the former
caught all exceptions, and the latter don't catch async exceptions.
However, in practice, nothing in the Annex monad uses async exceptions.
Grepping for throwTo and killThread only find stuff in the assistant,
which does not seem related.
Command.Add.undo is changed to accept a SomeException, and things
that use it for rollback now catch non-async exceptions, rather than
only IOExceptions.
Minor because normally only 1 FD is leaked per git-annex run. However,
the test suite leaks a few hundred FDs, and this broke it on the Debian
autobuilders, which seem to have a tigher than usual ulimit.
The leak was introduced by the lazy getDirectoryContents' that was
introduced in e6330988dd in order to scale to
millions of journal files -- if the lazy list was never fully consumed, the
directory handle did not get closed.
Instead, pull in openDirectory/readDirectory/closeDirectory code that I
already developed and submitted in a patch to the haskell directory library
earlier. Using this in journalDirty avoids the place that the lazy list
caused a problem. And using it in stageJournal eliminates the need for
getDirectoryContents'.
The getJournalFiles* functions are switched back to using the regular
strict getDirectoryContents. I'm not sure if those always consume the whole
list, so this avoids any leak. And the things that call those are things
like git annex unused, which also look at every file committed to the
git-annex branch, so would need more work to scale to insane numbers of
files anyway.
(And a vpop command, which is still a bit buggy.)
Still need to do vadd and vrm, though this also adds their documentation.
Currently not very happy with the view log data serialization. I had to
lose the TDFA regexps temporarily, so I can have Read/Show instances of
View. I expect the view log format will change in some incompatable way
later, probably adding last known refs for the parent branch to View
or something like that.
Anyway, it basically works, although it's a bit slow looking up the
metadata. The actual git branch construction is about as fast as it can be
using the current git plumbing.
This commit was sponsored by Peter Hogg.
The shell code was nasty, and buggy. New haskell code is much nicer,
and it's easy to do complicated calculations to properly convert possibly
absolute symlinks between libraries into relative links using it.
That's needed in files used to build the configure program.
For the other files, I'm keeping my __WINDOWS__ define, as I find that much easier to type.
I may search and replace it to use the mingw32_HOST_OS thing later.
that doesn't exist, or cannot be read
The problem is its use of unsafeInterleaveIO, which causes its IO code
to run when the thunk is forced, outside any exception trapping the caller
may do.
This *may* now return Add or Delete Changes as appropriate. All I know
for sure is that it compiles.
I had hoped to avoid maintaining my own state about the content of the
directory tree, and rely on git to check what was changed. But I can't;
I need to know about new and deleted subdirectories to add them to the
watch list, and git doesn't deal with (empty) directories.
So, wrote all the code to scan directories, remember their past contents,
compare with current contents, generate appropriate Change events, and
update bookkeeping info appropriately.
Baked into the code was an assumption that a repository's git directory
could be determined by adding ".git" to its work tree (or nothing for bare
repos). That fails when core.worktree, or GIT_DIR and GIT_WORK_TREE are
used to separate the two.
This was attacked at the type level, by storing the gitdir and worktree
separately, so Nothing for the worktree means a bare repo.
A complication arose because we don't learn where a repository is bare
until its configuration is read. So another Location type handles
repositories that have not had their config read yet. I am not entirely
happy with this being a Location type, rather than representing them
entirely separate from the Git type. The new code is not worse than the
old, but better types could enforce more safety.
Added support for core.worktree. Overriding it with -c isn't supported
because it's not really clear what to do if a git repo's config is read, is
not bare, and is then overridden to bare. What is the right git directory
in this case? I will worry about this if/when someone has a use case for
overriding core.worktree with -c. (See Git.Config.updateLocation)
Also removed and renamed some functions like gitDir and workTree that
misused git's terminology.
One minor regression is known: git annex add in a bare repository does not
print a nice error message, but runs git ls-files in a way that fails
earlier with a less nice error message. This is because before --work-tree
was always passed to git commands, even in a bare repo, while now it's not.
This drops the >>! and >>? with the nice low fixity. IfElse does have
undocumented >>=>>! and >>=>>? operators, but I deem that too fishy.
Anyway, using whenM and unlessM is easier; I sometimes mixed the operators
up.
The only fully supported thing is to have the main repository on one disk,
and .git/annex on another. Only commands that move data in/out of the annex
will need to copy it across devices.
There is only partial support for putting arbitrary subdirectories of
.git/annex on different devices. For one thing, but this can require more
copies to be done. For example, when .git/annex/tmp is on one device, and
.git/annex/journal on another, every journal write involves a call to
mv(1). Also, there are a few places that make hard links between various
subdirectories of .git/annex with createLink, that are not handled.
In the common case without cross-device, the new moveFile is actually
faster than renameFile, avoiding an unncessary stat to check that a file
(not a directory) is being moved. Of course if a cross-device move is
needed, it is as slow as mv(1) of the data.