So, it might be called sha1sum, or on some other OS, it might be called
sha1. It might be hidden away off of PATH on that OS. That's just expected
insanity; UNIX has been this way since 1980's. And these days, nobody even
gives the flying flip about standards that we briefly did in the 90's
after the first round of unix wars.
But it's the 2010's now, and we've certainly learned something.
So, let's make it so sometimes sha1 is a crazy program that wants to run as
root so it can lock memory while prompting for a passphrase, and outputting
binary garbage. Yes, that'd be wise. Let's package that in major Linux
distros, too, so users can stumble over it.
bup 0.25 does not accept that; and bup split reads from stdin by
default if no file is given. I'm not sure what version of bup changed this.
This only affected bup special remotes that were encrypted.
Monitors git-annex branch for changes, which are noticed by the Merger
thread whenever the branch ref is changed (either due to an incoming push,
or a local change), and refreshes cached config values for modified config
files.
Rate limited to run no more often than once per minute. This is important
because frequent git-annex branch changes happen when files are being
added, or transferred, etc.
A primary use case is that, when preferred content changes are made,
and get pushed to remotes, the remotes start honoring those settings.
Other use cases include propigating repository description and trust
changes to remotes, and learning when a remote has added a new special
remote, so the webapp can present the GUI to enable that special remote
locally.
Also added a uuid.log cache. All other config files already had caches.
in= was problimatic in two ways. First, it referred to a remote by name,
but preferred content expressions can be evaluated elsewhere, where that
remote doesn't exist, or a different remote has the same name. This name
lookup code could error out at runtime. Secondly, in= seemed pretty useless.
in=here did not cause content to be gotten, but it did let present content
be dropped.
present is more useful, although "not present" is unstable and should be
avoided.
When in a subdir, both the normal filepath, and the filepath relative to
the top of the git repo are needed for matching. The former for key lookup,
and the latter for include/exclude to match against. Previously, key lookup
didn't work in this situation.
The old code was just wrong in taking fromPath of GIT_DIR -- that made an
localUnknown location with the GIT_DIR in it, which only worked by
accident, and failed in submodules.
Now that this is handled correctly, git-annex can be used in git submodules.
Also, fixed infelicity where Git.CurrentRepo and Git.Config.updateLocation
were both dealing with core.worktree. Now updateLocation handles it for
Local as well as for LocalUnknown repos.
Aka solve the github problem.
Note that it's possible the initial configlist will fail for some network
reason etc, and then the fetch succeeds. In this case, a usable remote gets
disabled. But it does print a message, and this only happens once per
remote, so that seems ok.
There was one forkProcess lurking in test.hs, and that seems to be
responsible for recent buildd failures on amd64 and armhf. I was able to
reproduce it pretty easily on amd64, and even once on i386, and it was
clearly that same bad old threaded runtime hang. So removing this
forkProcess should fix it. Odd that it lurked for some months before
popping up.
Setting GIT_INDEX_FILE clobbers the rest of the environment, making git
not read ~/.gitconfig, and blow up if GECOS didn't have a name for the
user.
I'm not entirely happy with getEnvironment being run every time now,
that's somewhat expensive. It may make sense to just set GIT_COMMITTER_*
and GIT_AUTHOR_*, but I worry that clobbering the rest could break PATH,
or GIT_PATH, or something else that might be used by a command run in here.
And caching the environment is not a good idea either; it can change..
webapp: Adds newly created repositories to one of these groups:
clients, drives, servers
This is heuristic, but it's a pretty good heuristic, and can always be
configured.
Both when queueing downloads, and uploads, consults the preferred content
settings.
I didn't make it check yet when requeing failed transfers or queuing
deferred downloads; dealing with the preferred content settings (or indeed,
other settings) changing while the assistant is running still needs work.
Incomplete; I need to finish parsing and saving. This will also be used
for editing transfer control expresssions.
Removed the group display from the status output, I didn't really
like that format, and vicfg can be used to see as well as edit rempository
group membership.
Makes it safe to use git annex unlock with the watcher/assistant.
And also to mix use of the watcher/assistant with regular files stored in git.
Long ago, I had avoided doing this check, except during the startup scan,
because it would be slow to run ls-files repeatedly.
But then I added the lsof check, and to make that fast, got it to detect
batch file adds. So let's move the ls-files check to also occur when it'll
have a batch, and can check them all with one call.
This does slow down adding a single file by just a bit, but really only
a little bit. (The lsof check is probably more expensive.) It also
speeds up the startup scan, especially when there are lots of new files
found by the scan.
Also, fixed the sleep for annex.delayadd to not run while the threadstate
lock is held, so it doesn't unnecessarily freeze everything else.
Also, --force no longer makes it skip the lsof check, which was not
documented, and seems never a good idea.
This fixes a problem I was seeing in the assistant where two remotes would
attempt to sync with one another at the same time, and both failed pushing
the diverged git-annex branch. Then when both tried to resolve the failed
push, they each modified their git-annex branch, which again each blocked
the other from pushing into it. The result was that the git-annex
branches were perpetually diverged (despite having the same content!) and
once the assistant fell into this trap, it couldn't get out and always
had to do the slow push/fail/pull/merge/push/fail cycle.
The default backend used when adding files to the annex is changed from
SHA256 to SHA256E, to simplify interoperability with OSX, media players,
and various programs that needlessly look at symlink targets.
To get old behavior, add a .gitattributes containing: * annex.backend=SHA256
Avoid crashing when "git annex get" fails to download from one location,
and falls back to downloading from a second location.
The problem is that git annex get calls download recursively from within
itself if the first download attempt fails. So the first time through, it
writes a transfer info file, which is then overwritten on the second,
recursive call. Then on cleanup, it tries to delete the file twice, which
of course doesn't work.
Fixed both by not crashing if the transfer file is removed, and by
changing Get to not run download recursively like that. It's the only
thing that did so, and it just seems like a bad idea.
This reverts commit abde98cda2.
Temporarily dropping from master, since this actually uses stuff
that's only currently availble in the assistant branch. Will come back when
I merge that, and can wait..
Using Crypto's version of the hashes would be another option.
I need to benchmark it. The SHA2 library (which provides SHA1 also,
confusing name) may be the fastest option, but is not currently in Debian.
This *almost* works.
Along the way, I noticed that the --uuid parameter was being accidentially
passed after the --, so that has never been actually used by
git-annex-shell to verify it's running in the expected repository. Oops. Fixed.
In order to record a semi-useful filename associated with the key,
this required plumbing the filename all the way through to the remotes'
storeKey and retrieveKeyFile.
Note that there is potential for deadlock here, narrowly avoided.
Suppose the repos are A and B. A sends file foo to B, and at the same
time, B gets file foo from A. So, A locks its upload transfer info file,
and then locks B's download transfer info file. At the same time,
B is taking the two locks in the opposite order. This is only not a
deadlock because the lock code does not wait, and aborts. So one of A or
B's transfers will be aborted and the other transfer will continue.
Whew!
Note this is per-remote, so trying to get the same file from multiple
remotes can still let duplicate downloads run. (And uploading the same file
to multiple remotes is not duplicate at all of course.)
get, move, and copy are the only git-annex subcommands that transfer
files, but there's still git-annex-shell recvkey and sendkey to deal with too.
I considered modifying retrieveKeyFile or getViaTmp, but they are called
by other code that does not involve expensive file transfers (migrate)
or that does file transfers that should not be checked by this (fsck --from).
Accept arbitrarily encoded repository filepaths etc when reading git config
output. This fixes support for remotes with unusual characters in their
names.
For example, a remote with a url of /tmp/çüş was previously
skipped, because the filename wasn't encoded right so it didn't think it
was available. And when setting the annex-uuid of a remote named "çüş",
it used to add it under a mis-encoded form of the remote's name. Both these
cases now work ok in my testing.
Prelude.undefined error message was introduced by
bb4f31a0ee.
It seems best to filter out local repositories that cannot be accessed
from the list of remotes, rather than keeping them in and making every
thing that uses the list have to deal with remotes that may have an unknown
location.
Besides fixing the error message, this also makes unavailable local
remotes' names not be shown in various messages, including in git annex
status output.
Also, move --to an unavailable local repository now avoids some ugly
errors like "changeWorkingDirectory: does not exist".
Was decoding the git-cat-file of the symlink target as utf8, but that can't
do, unix filenames are from the 70's and need this shiny disco
fileSystemEncoding.
Could not reproduce the build failure I had seen related to this,
but the numbers were wrong with statfs64. Probably pulling from the wrong
place in the structure. statvfs seems to work..
This ensures that all special remotes show up in git annex status.
Before, a special remote that was not manually described, and was not
a current git remote, did not show up there, although initremote did list
it.
Anything that tries to open the file for write, or delete the file,
or replace it with something else, will not affect the add.
Only if a process has the file open for write before add starts
can it still change it while (or after) it's added to the annex.
(fsck will catch this later of course)
Resetting an unlocked file to the branch head failed if it had just been
added, not committed, and unlocked, since the branch didbn't have it.
The code was concerned about dropping any changes that might be staged in the
index, but I cannot see why.
The environment needs to override git-config. Changed when git config is
read, and avoid rereading it once it's been read.
chdir for both worktree settings.
Baked into the code was an assumption that a repository's git directory
could be determined by adding ".git" to its work tree (or nothing for bare
repos). That fails when core.worktree, or GIT_DIR and GIT_WORK_TREE are
used to separate the two.
This was attacked at the type level, by storing the gitdir and worktree
separately, so Nothing for the worktree means a bare repo.
A complication arose because we don't learn where a repository is bare
until its configuration is read. So another Location type handles
repositories that have not had their config read yet. I am not entirely
happy with this being a Location type, rather than representing them
entirely separate from the Git type. The new code is not worse than the
old, but better types could enforce more safety.
Added support for core.worktree. Overriding it with -c isn't supported
because it's not really clear what to do if a git repo's config is read, is
not bare, and is then overridden to bare. What is the right git directory
in this case? I will worry about this if/when someone has a use case for
overriding core.worktree with -c. (See Git.Config.updateLocation)
Also removed and renamed some functions like gitDir and workTree that
misused git's terminology.
One minor regression is known: git annex add in a bare repository does not
print a nice error message, but runs git ls-files in a way that fails
earlier with a less nice error message. This is because before --work-tree
was always passed to git commands, even in a bare repo, while now it's not.
Amoung other things, this makes unlocking a WORM backed file and then
re-adding it without making any changes not add a new object, as the
timestamp is preserved.
annex.ssh-options, annex.rsync-options, annex.bup-split-options.
And adjust types to avoid the bugs that broke several config settings
recently. Now "annex." prefixing is enforced at the type level.
Rsync special remotes can be configured with shellescape=no to avoid shell
quoting that is normally done when using rsync over ssh. This is known to
be needed for certian rsync hosting providers (specificially
hidrive.strato.com) that use rsync over ssh but do not pass it through the
shell.
This option avoids gpg key distribution, at the expense of flexability, and
with the requirement that all clones of the git repository be equally
trusted.
This is incomplete, it does not honor it yet for hash directories
and other annex bookkeeping files. Some of that is not needed for a bare
repo; some of it may be.
git-annex (but not git-annex-shell) supports the git help.autocorrect
configuration setting, doing fuzzy matching using the restricted
Damerau-Levenshtein edit distance, just as git does. This adds a build
dependency on the haskell edit-distance library.
Continue using the key name as bup ref name, to preserve backwards
compatability, unless it is an illegal git ref. In that case, use a sha256
of the key name instead.
Don't check if configure indicated checks won't work. This should fix a
FTBFS on mipsel, where configure correctly detects the checks won't work,
while garbage is returned for disk space info at git-annex runtime. It also
means that, when built via cabal, disk space checks are not enabled,
unfortunatly.
* git-annex now behaves as git-annex-shell if symlinked to and run by that
name. The Makefile sets this up, saving some 8 mb of installed size.
* git-union-merge is a demo program, so it is no longer built by default.
openSUSE patches rsync with a patch adding SIP protocol support.
https://gist.github.com/2026167
With this patch, running rsync with no hostname parameter is apparently
supposed to list SIP hosts on the network. Practically, it does nothing
and exits 0.
git-annex uses rsync in a very special way to allow git-annex-shell to be
run on the remote host, and so did not need to specify a hostname, or a
file to transfer as a rsync parameter. So it sent ":", a degenerate case of
"host:file".
But the patch cannot differentiate ":" with no host parameter
(a bug in the SIP patch surely).
Results were that getting files failed, as rsync seemed to succeed, but the
requested file failed to arrive. Also I think that sending files will
make git-annex think a file has been transferred to the remote when
really rsync does nothing.
The workaround for this buggy rsync patch is to use "dummy:" as the
hostname.
Add tuning, docs, etc.
Not sure if status is the right place to remote size.. perhaps unused
should report the size and also warn if it sees more keys than the bloom
filter allows?
Can't trust the key size to be accurate for tmp and bad keys, so check
actual file size. In the wild I saw the old code be wrong by a factor
of about 100!
If all tmp/bad keys are empty, they're not shown in status at all.
Showing 0 bytes and suggesting to clean it up seemed weird..
.. Allowing it to be used by things in constant space!
Random statistics: git annex status has gone from taking 239 mb
of memory and 26 seconds in a repo, to 8 mb and 13 seconds.
The trick here is the unsafeInterleaveIO, and the form of the function's
recursion, which I cribbed heavily from System.IO.HVFS.Utils.recurseDirStat.
The difference is, this one goes to a limited depth and avoids statting
everything.
Before, it leaked space due to caching lists of keys. Now all necessary
data about keys is calculated as they stream in.
The "nearly constant" is due to getKeysPresent, which builds up a lot
of [] thunks as it traverses .git/annex/objects/. Will deal with it later.
Much of the memory bloat turned out to be due to getKeysReferenced
containing a mapM, which is strict and buffered the whole list
rather than streaming it.
The other half of the bloat was due to building a temporary Set
in order to call S.difference. While that is more cpu efficient,
I switched to successive S.delete, since with it, I can run a whole
git annex unused in less than 8 mb of memory.
The whole Set of keys with content available is still stored in memory,
so running unused in a repo with a whole lot of file content will still
use more memory. In a repo containing 6000 files, it needed 40 mb.
Note that the status command still uses the bloatful getKeysReferenced.
This has two benefits.
1. When a lot of refs are going to be received, get them via lower cost
connection when possible.
2. Allows ctrl-c of sync after the cheaper remotes have been pulled from
(or pushed to).
Fix Key directory hash calculation code to behave as it did before version
3.20120227 when a key contains non-ascii.
The hash directories for a given Key are based on its md5sum.
Prior to ghc 7.4, Keys contained raw, undecoded bytes, so the md5sum was
taken of each byte in turn. With the ghc 7.4 filename encoding change,
keys contains decoded unicode characters (possibly with surrigates for
undecodable bytes). This changes the result of the md5sum, since the md5sum
used is pure haskell and supports unicode. And that won't do, as git-annex
will start looking in a different hash directory for the content of a key.
The surrigates are particularly bad, since that's essentially a ghc
implementation detail, so could change again at any time. Also, changing
the locale changes how the bytes are decoded, which can also change
the md5sum.
Symptoms would include things like:
* git annex fsck would complain that no copies existed of a file,
despite its symlink pointing to the content that was locally present
* git annex fix would change the symlink to use the wrong hash
directory.
Only WORM backend is likely to have been affected, since only it tends
to include much filename data (SHA1E could in theory also be affected).
I have not tried to support the hash directories used by git-annex versions
3.20120227 to 3.20120308, so things added with those versions with WORM
will require manual fixups. Sorry for the inconvenience!
This is a straight up pure-code stinker. The relative path calculation
looked for common subdirectories in the two paths, but failed to stop
after the paths diverged. When a later pair of subdirectories were the
same, the resulting relative path was wrong.
Added regression test for this.
Locking is used, so that, if there are multiple git-annex processes
using a remote concurrently, the stop hook is only run by the last
process that uses it.
Avoiding writing files larger than a specified size is useful on certian
things. For example, box.com has a file size limit of 100 mb. Could also
be useful on really crappy removable media.
Rather than go through the location log to see which files are present on
the remote, it simply looks at the disk contents directly.
I benchmarked this speeding up scanning 834 files, from an annex on my
phone's SSD, from 11.39 seconds to 1.31 seconds. (No files actually moved.)
Also benchmarked 8139 files, from an annex on spinning storage,
speeding up from 103.17 to 13.39 seconds.
Note that benchmarking with an encrypted annex on flash actually showed a
minor slowdown with this optimisation -- from 13.93 to 14.50 seconds. Seems
the overhead of doing the crypto needed to get the filenames to directly
check can be higher than the overhead of looking up data in the location
log. (Which says good things about how well the location log and git have
been optimised!) It *may* make sense to make encrypted local remotes not
have hasKeyCheap set; further benchmarking is called for.
Added Annex.cleanup, which is a general purpose interface for adding
actions to run at the end.
Remotes with the old git-annex-shell will commit every time, and have no
commit command, so hide stderr when running the commit command.
Now changes are staged into the branch's index, but not committed,
which avoids growing a large journal. And sync and merge always
explicitly commit, ensuring that even when they do nothing else,
they commit the staged changes.
Added a flag file to indicate that the branch's journal contains
uncommitted changes. (Could use git ls-files, but don't want to run
that every time.)
In the future, this ability to have uncommitted changes staged in the
journal might be used on remotes after a series of oneshot commands.
To avoid commits of data to the git-annex branch after each command
is run, set annex.alwayscommit=false. Its data will then be committed
less frequently, when a merge or sync is done.
I was able to reproduce this on linux using the kernel's nfs server and
mounting localhost:/. Determined that removing the directory fails when
the just-deleted file in it was locked. Considered dropping the lock
before removing the directory, but this would complicate parts of the code
that should not need to worry about locking. So instead, ignore the failure
to remove the directory in this case.
While I was at it, made it attempt to remove both levels of hash
directories, in case they're empty.
storing it in remotes/web/xx/yy/foo.log meant lots of extra directory
objects in git. Now I use xx/yy/foo.log.web, which is just as unique, but
more efficient since foo.log is there anyway.
Of course, it still looks in the old location too.