With the directory special remote, manifest objects uploaded by
git-remote-annex were mode 600. This prevented accessing them
from a httpalso special remote, for example.
The directory special remote just copies the file perms. Which is fine
except in this case the file perms were wrong.
An incremental push that gets converted to a full push due to this
config results in the inManifest having just one bundle in it, and the
outManifest listing every other bundle. So it actually takes up more
space on the special remote. But, it speeds up clone and fetch to not
have to download a long series of bundles for incremental pushes.
When building an adjusted unlocked branch, make pointer files executable
when the annex object file is executable.
This slows down git-annex adjust --unlock/--unlock-present by needing to
stat all annex object files in the tree. Probably not a significant
slowdown compared to other work they do, but I have not benchmarked.
I chose to leave git-annex adjust --unlock marked as stable, even though
get or drop of an object file can change whether it would make the pointer
file executable. Partly because making it unstable would slow down
re-adjustment, and partly for symmetry with the handling of an unlocked
pointer file that is executable when the content is dropped, which does not
remove its execute bit.
cleanupInitialization gets run when an exception is thrown, so needs to
avoid throwing exceptions itself, as that would hide the error message
that the user needs to see.
When exporttree=yes is also set. Probably it would also be possible to
support ones with only importtree=yes, by enabling exporttree=yes for
the remote only when using git-remote-annex, but let's keep this
simple... I'm not sure what gets recorded in .git/annex/ state
differently in the two cases that might cause a problem when doing that.
Note that the full annex:: urls generated and displayed for such a
remote omit the importree=yes. Which is ok, cloning from such an url
uses an exporttree=remote, but the git-annex branch doesn't get written
by this program, so once the real config is available from the git-annex
branch, it will still function as an importree=yes remote.
This git bug also broke git-lfs, and I am confident it will be reverted
in the next release.
For now, cloning from an annex:: url wastes some bandwidth on the next
pull by not caching bundles locally.
If git doesn't fix this in the next version, I'd be tempted to rethink
whether bundle objects need to be cached locally. It would be possible to
instead remember which bundles have been seen and their heads, and
respond to the list command with the heads, and avoid unbundling them
agian in fetch. This might even be a useful performance improvement in
the latter case. It would be quite a complication to a currently simple
implementation though.
This fixes pushing a new ref that is the same as something already
pushed. In findotherprereq, it compares two shas, which didn't work when
one is actually not a sha but a ref.
This is one of those cases where Sha being an alias for Ref makes it
hard to catch mistakes. One of these days those need to be
differentiated at the type level, but not today..
Check explicitly for an annex:: url, not just any url. While no built-in
special remotes set an url, except ones that can be synced with, it
seems possible that some external special remote sets an url for its own
use, but did not expect it to be used by git-annex sync et al.
The assistant also syncs with them.
Usually this won't fail even if .git/HEAD is not set or points to a ref
that doesn't exist. However, early in clone, it contains
"ref: refs/heads/.invalid" which causes an error "fatal: No such ref: HEAD"
When cloning from a special remote, git-remote-annex output that once
per bundle.
Locally record the manifest before uploading it or any bundles,
and read it on the next push. Any bundles from the push that are
not included in the currently being pushed manifest will get added
to the outManifest, and so eventually get deleted.
This deals with an interrupted push that is not resumed and instead
something else is pushed. And it deals with a push race that overwrites
the manifest.
Of course, this can't help if one of those situations is followed by
the local repo being deleted. But that's equivilant to doing a git-annex
copy of a new annexed file to a special remote and then deleting the
special repo w/o pushing. In either case the special remote ends up with
a object in it that git-annex doesn't know about.