The idea is that upon a merge of the git-annex branch, or a commit to
the git-annex branch, the reposize database will be updated. So it
should always accurately reflect the location log sizes, but it will
often be behind the actual current sizes.
Annex.reposizes will start with the value from the database, and get
updated with each transfer, so it will reflect a process's best
understanding of the current sizes.
When there are multiple processes all transferring to the same repo,
Annex.reposize will not reflect transfers made by the other processes
since the current process started. So when using balanced preferred
content, it may make suboptimal choices, including trying to transfer
content to the repo when another process has already filled it up.
But this is the same as if there are multiple processes running on
ifferent machines, so is acceptable. The reposize will eventually
get an accurate value reflecting changes made by other processes or in
other repos.
This deals with the possible security problem that someone could make an
unusually low UUID and generate keys that are all constructed to hash to
a number that, mod the number of repositories in the group, == 0.
So balanced preferred content would always put those keys in the
repository with the low UUID as long as the group contains the
number of repositories that the attacker anticipated.
Presumably the attacker than holds the data for ransom? Dunno.
Anyway, the partial solution is to use HMAC (sha256) with all the UUIDs
combined together as the "secret", and the key as the "message". Now any
change in the set of UUIDs in a group will invalidate the attacker's
constructed keys from hashing to anything in particular.
Given that there are plenty of other things someone can do if they can
write to the repository -- including modifying preferred content so only
their repository wants files, and numcopies so other repositories drom
them -- this seems like safeguard enough.
Note that, in balancedPicker, combineduuids is memoized.
This removes versionedExport, which was only used by the S3 special
remote. Instead, versionedexport=yes is a common way for remotes to
indicate that they are versioned.
This handles the workflow where the branch is first pushed to the proxy,
and then files in the exported tree are later are copied to the proxied remote.
Turns out that the way the export log is structured, nothing needs
to be done to finalize the export once the last key is sent to it. Which
is great because that would have been a lot of complication. On
receiving the push, Command.Export runs and calls recordExportBeginning,
does as much as it can to update the export with the files currently
on it, and then calls recordExportUnderway. At that point, the
export.log records the export as "complete", but it's not really. And
that's fine. The same happens when using `git-annex export` when some
files are not available to send. Other repositories that have
access to the special remote can already retrieve files from it. As
the missing files get copied to the exported remote, all that needs
to be done is record each in the export db.
At this point, proxying to exporttree=yes annexobjects=yes special remotes
is fully working. Except for in the case where multiple files in the
tree use the same key, and the files are sent to the proxied remote
before pushing the tree.
It seems that even special remotes without annexobjects=yes will work if
used with the workflow where the git-annex branch is pushed before
copying files. But not with the `git-annex push` workflow.
Enough to let lockcontent routes be included and servant-client be used.
But not enough to use servant-client with those routes. May need to
implement a separate runner for that part of the protocol?
Also some misc other stuff needed to use servant-client.
And fix exposing of UUID in the JSON types. UUID does actually have
aeson instances, but they're used elsewhere (metadata --batch, although
only included to get it to compile, not actually used in there) and not
suitable for use here since this must work with every possible UUID.
Added Maybe POSIXTime to SafeDropProof, which gets set when the proof is
based on a LockedCopy. If there are several LockedCopies, it uses the
closest expiry time. That is not optimal, it may be that the proof
expires based on one LockedCopy but another one has not expired. But
that seems unlikely to really happen, and anyway the user can just
re-run a drop if it fails due to expiry.
Pass the SafeDropProof to removeKey, which is responsible for checking
it for expiry in situations where that could be a problem. Which really
only means in Remote.Git.
Made Remote.Git check expiry when dropping from a local remote.
Checking expiry when dropping from a P2P remote is not yet implemented.
P2P.Protocol.remove has SafeDropProof plumbed through to it for that
purpose.
Fixing the remaining 2 build warnings should complete this work.
Note that the use of a POSIXTime here means that if the clock gets set
forward while git-annex is in the middle of a drop, it may say that
dropping took too long. That seems ok. Less ok is that if the clock gets
turned back a sufficient amount (eg 5 minutes), proof expiry won't be
noticed. It might be better to use the Monotonic clock, but that doesn't
advance when a laptop is suspended, and while there is the linux
Boottime clock, that is not available on other systems. Perhaps a
combination of POSIXTime and the Monotonic clock could detect laptop
suspension and also detect clock being turned back?
There is a potential future flag day where
p2pDefaultLockContentRetentionDuration is not assumed, but is probed
using the P2P protocol, and peers that don't support it can no longer
produce a LockedCopy. Until that happens, when git-annex is
communicating with older peers there is a risk of data loss when
a ssh connection closes during LOCKCONTENT.
Walking a tightrope between security and convenience here, because
git-annex-shell needs to only proxy for things when there has been
an explicit, local action to configure them.
In this case, the user has to have run `git-annex extendcluster`,
which now sets annex-cluster-gateway on the remote.
Note that any repositories that the gateway is recorded to
proxy for will be proxied onward. This is not limited to cluster nodes,
because checking the node log would not add any security; someone could
add any uuid to it. The gateway of course then does its own
checking to determine if it will allow proxying for the remote.
Avoid `git-annex sync --content` etc from operating on cluster nodes by default
since syncing with a cluster implicitly syncs with its nodes. This avoids a
lot of unncessary work when a cluster has a lot of nodes just in checking
if each node's preferred content is satisfied. And it avoids content
being sent to nodes individually, so instead syncing with clusters always
fanout uploads to nodes.
The downside is that there are situations where a cluster's preferred content
settings can be met, but those of its nodes are not. Or where a node does not
contain a key, but the cluster does, and there are not enough copies of the key
yet, so it would be desirable the send it there. I think that's an acceptable
tradeoff. These kind of situations are ones where the cluster itself should
probably be responsible for copying content to the node. Which it can do much
less expensively than a client can. Part of the balanced preferred content
design that I will be working on in a couple of months involves rebalancing
clusters, so I expect to revisit this.
The use of annex-sync config does allow running git-annex sync with a specific
node, or nodes, and it will sync with it. And it's also possible to set
annex-sync git configs to make it sync with a node by default. (Although that
will require setting up an explicit git remote for the node rather than relying
on the proxied remote.)
Logs.Cluster.Basic is needed because Remote.Git cannot import Logs.Cluster
due to a cycle. And the Annex.Startup load of clusters happens
too late for Remote.Git to use that. This does mean one redundant load
of the cluster log, though only when there is a proxy.
This makes git-annex sync and similar not treat proxied remotes as git
syncable remotes.
Also, display in git-annex info remote when the remote is proxied.
Loading the remote list a second time was removing all proxied remotes.
That happened because setting up the proxied remote added some config
fields to the in-memory git config, and on the second load, it saw those
configs and decided not to overwrite them with the proxy.
Now on the second load, that still happens. But now, the proxied
git configs are used to generate a remote same as if those configs were
all set. The reason that didn't happen before was twofold,
the gitremotes cache was not dropped, and the remote's url field was not
set correctly.
The problem with the remote's url field is that while it was marked as
proxy inherited, all other proxy inherited fields are annex- configs.
And the code to inherit didn't work for the url field.
Now it all works, but git-annex sync is left running git push/pull on
the proxied remote, which doesn't work. That still needs to be fixed.
Client side support for SUCCESS-PLUS and ALREADY-HAVE-PLUS
is complete, when a PUT stores to additional repositories
than the expected on, the location log is updated with the
additional UUIDs that contain the content.
Started implementing PUT fanout to multiple remotes for clusters.
It is untested, and I fear fencepost errors in the relative
offset calculations. And it is missing proxying for the protocol
after DATA.
This is to avoid inserting a cluster uuid into the location log when
only dead nodes in the cluster contain the content of a key.
One reason why this is necessary is Remote.keyLocations, which excludes
dead repositories from the list. But there are probably many more.
Implementing this was challenging, because Logs.Location importing
Logs.Cluster which imports Logs.Trust which imports Remote.List resulted
in an import cycle through several other modules.
Resorted to making Logs.Location not import Logs.Cluster, and instead
it assumes that Annex.clusters gets populated when necessary before it's
called.
That's done in Annex.Startup, which is run by the git-annex command
(but not other commands) at early startup in initialized repos. Or,
is run after initialization.
Note that is Remote.Git, it is unable to import Annex.Startup, because
Remote.Git importing Logs.Cluster leads the the same import cycle.
So ensureInitialized is not passed annexStartup in there.
Other commands, like git-annex-shell currently don't run annexStartup
either.
So there are cases where Logs.Location will not see clusters. So it won't add
any cluster UUIDs when loading the log. That's ok, the only reason to do
that is to make display of where objects are located include clusters,
and to make commands like git-annex get --from treat keys as being located
in a cluster. git-annex-shell certainly does not do anything like that,
and I'm pretty sure Remote.Git (and callers to Remote.Git.onLocalRepo)
don't either.
A cluster UUID is a version 8 UUID, with first octets 'a' and 'c'.
The rest of the content will be random.
This avoids a class of attack where the UUID of a repository is used as
the UUID of a cluster, which will prevent git-annex from updating
location logs for that repository. I don't know why someone would want
to do that, but let's prevent it.
Also, isClusterUUID make it easy to filter out cluster UUIDs when
writing the location logs.
Not used yet. (Or tested.)
I did consider making the log start with the uuid of the node, followed
by the cluster uuid (or uuids). That would perhaps mean a smaller write
to the git-annex branch when adding a node, but overall the log file
would be larger, and it will be read and cached near to startup on most
git-annex runs.
Since a proxied remote uses the proxy's git repo, this makes sense.
Although I don't think this config is ever used when accessing a remote
via git-annex-shell.
For NotifyChanges and also for the fallthrough case where
git-annex-shell passes a command off to git-shell, proxying is currently
ignored. So every remote that is accessed via a proxy will be treated as
the same git repository.
Every other command listed in cmdsMap will need to check if
Annex.proxyremote is set, and if so handle the proxying appropriately.
Probably only P2PStdio will need to support proxying. For now,
everything else refuses to work when proxying.
The part of that I don't like is that there's the possibility a command
later gets added to the list that doesn't check proxying.
When proxying is not enabled, it's important that git-annex-shell not
leak information that it would not have exposed before. Such as the
names or uuids of remotes.
I decided that, in the case where a repository used to have proxying
enabled, but no longer supports any proxies, it's ok to give the user a
clear error message indicating that proxying is not configured, rather
than a confusing uuid mismatch message.
Similarly, if a repository has proxying enabled, but not for the
requested repository, give a clear error message.
A tricky thing here is how to handle the case where there is more than
one remote, with proxying enabled, with the specified uuid. One way to
handle that would be to plumb the proxyRemoteName all the way through
from the remote git-annex to git-annex-shell, eg as a field, and use
only a remote with the same name. That would be very intrusive though.
Instead, I decided to let the proxy pick which remote it uses to access
a given Remote. And so it picks the least expensive one.
The client after all doesn't necessarily know any details about the
proxy's configuration. This does mean though, that if the least
expensive remote is not accessible, but another remote would have
worked, an access via the proxy will fail.
When there is a proxy remote, remotes that it proxies need to be
constructed with the right subset of the remote git-config settings.
Obviously, the url is the same, and the uuid is different.
Added proxyInheritedFields that lists all the fields that should be
inherited. These will be copied into the proxied remote when instantiating it.
There were a lot of decisions here, made without certainty in some
cases. May need to revisit them.
The RemoteGitConfigField type was added to make sure that every config
used in extractRemoteGitConfig gets considered for proxy inheritance,
including new ones that get added going forward. And to avoid needing to
write the field string more than once.
An incremental push that gets converted to a full push due to this
config results in the inManifest having just one bundle in it, and the
outManifest listing every other bundle. So it actually takes up more
space on the special remote. But, it speeds up clone and fetch to not
have to download a long series of bundles for incremental pushes.
Check explicitly for an annex:: url, not just any url. While no built-in
special remotes set an url, except ones that can be synced with, it
seems possible that some external special remote sets an url for its own
use, but did not expect it to be used by git-annex sync et al.
The assistant also syncs with them.
This avoids some apparently otherwise unsolveable problems involving
races that resulted in the manifest listing bundles that were deleted.
Removed the annex-max-git-bundles config because it can't actually
result in deleting old bundles. It would still be possible to have a
config that controls how often to do a full push, which would avoid
needing to download too many bundles on clone, as well as needing to
checkpresent too many bundles in verifyManifest. But it would need a
different name and description.
Implemented alternateJournal, which git-remote-annex
uses to avoid any writes to the git-annex branch while setting up
a special remote from an annex:: url.
That prevents the remote.log from being overwritten with the special
remote configuration from the url, which might not be 100% the same as
the existing special remote configuration.
And it prevents an overwrite deleting of other stuff that was
already in the remote.log.
Also, when the branch was created by git-remote-annex, only delete it
at the end if nothing else has been written to it by another command.
This fixes the race condition described in
797f27ab05, where git-remote-annex
set up the branch and git-annex init and other commands were
run at the same time and their writes to the branch were lost.
This turns out to only be necessary is edge cases. Most of the
time, git-annex unused --from remote doesn't see git-remote-annex keys
at all, because it does not record a location log for them.
On the other hand, git-annex unused does find them, since it does not
rely on the location log. And that's good because they're a local cache
that the user should be able to drop.
If, however, the user ran git-annex unused and then git-annex move
--unused --to remote, the keys would have a location log for that
remote. Then git-annex unused --from remote would see them, and would
consider them unused. Even when they are present on the special remote
they belong to. And that risks losing data if they drop the keys from
the special remote, but didn't expect it would delete git branches they
had pushed to it.
So, make git-annex unused --from skip git-remote-annex keys whose uuid
is the same as the remote.
I hope to support importtree=yes eventually, but it does not currently
work.
Added remote.<name>.allow-encrypted-gitrepo that needs to be set to
allow using it with encrypted git repos.
Note that even encryption=pubkey uses a cipher stored in the git repo
to encrypt the keys stored in the remote. While it would be possible to
not encrypt the GITBUNDLE and GITMANIFEST keys, and then allow using
encryption=pubkey, it doesn't currently work, and that would be a
complication that I doubt is worth it.
Put the annex objects in .git/annex/objects/ inside the export remote.
This way, when importing from the remote, they will be filtered out.
Note that, when importtree=yes, content identifiers are used, and this
means that pushing to a remote updates the git-annex branch. Urk.
Will need to try to prevent that later, but I already had a todo about
that for other reasons.
Untested!
Sponsored-By: Brock Spratlen on Patreon
Making GITBUNDLE be in the backend list allows those keys to be
hashed to verify, both when git-remote-annex downloads them, and by other
transfers and by git fsck.
GITMANIFEST is not in the backend list, because those keys will never be
stored in .git/annex/objects and can't be verified in any case.
This does mean that git-annex version will include GITBUNDLE in the list
of backends.
Also documented these in backends.mdwn
Sponsored-by: Kevin Mueller on Patreon
When a file in the export is renamed, and the remote's renameExport
returned Nothing, renaming to the temp file would first say it was
renaming, and appear to succeed, but actually what it did was delete the
file. Then renaming from the temp file would not do anything, since the
temp file is not present on the remote. This appeared as if a file got
renamed to a temp file and left there.
Note that exporttree=yes importree=yes remotes have their usual
renameExport replaced with one that returns Nothing. (For reasons
explained in Remote.Helper.ExportImport.) So this happened
even with remotes that support renameExport.
Fix by letting renameExport = Nothing when it's not supported at all.
This avoids displaying the rename.
Sponsored-by: Graham Spencer on Patreon
This needs the content to be present in order to hash it. But it's not
possible for a module used by Backend.URL to call inAnnex because that
would entail a dependency loop. So instead, rely on the fact that
Command.Migrate calls inAnnex before performing a migration.
But, Command.ExamineKey calls fastMigrate and the key may or may not
exist, and it's not wanting to actually perform a migration in any case.
To handle that, had to add an additional value to fastMigrate to
indicate whether the content is inAnnex.
Factored generateEquivilantKey out of Remote.Web.
Note that migrateFromURLToVURL hardcodes use of the SHA256E backend.
It would have been difficult not to, given all the dependency loop
issues. But --backend and annex.backend are used to tell git-annex
migrate to use VURL in any case, so there's no config knob that
the user could expect to configure that.
Sponsored-by: Brock Spratlen on Patreon
Considerable difficulty to work around an import cycle. Had to move the
list of backends (except for VURL) to Backend.Variety to VURL could use
it.
Sponsored-by: Kevin Mueller on Patreon
When downloading a VURL from the web, make sure that the equivilant key
log is populated.
Unfortunately, this does not hash the content while it's being
downloaded from the web. There is not an interface in Backend currently
for incrementally hash generation, only for incremental verification of an
existing hash. So this might add a noticiable delay, and it has to show
a "(checksum...") message. This could stand to be improved.
But, that separate hashing step only has to happen on the first download
of new content from the web. Once the hash is known, the VURL key can have
its hash verified incrementally while downloading except when the
content in the web has changed. (Doesn't happen yet because
verifyKeyContentIncrementally is not implemented yet for VURL keys.)
Note that the equivilant key log file is formatted as a presence log.
This adds a tiny bit of overhead (eg "1 ") per line over just listing the
urls. The reason I chose to use that format is it seems possible that
there will need to be a way to remove an equivilant key at some point in
the future. I don't know why that would be necessary, but it seemed wise
to allow for the possibility.
Downloads of VURL keys from other special remotes that claim urls,
like bittorrent for example, does not popilate the equivilant key log.
So for now, no checksum verification will be done for those.
Sponsored-by: Nicholas Golder-Manning on Patreon
Not yet implemented is recording hashes on download from web and
verifying hashes.
addurl --verifiable option added with -V short option because I
expect a lot of people will want to use this.
It seems likely that --verifiable will become the default eventually,
and possibly rather soon. While old git-annex versions don't support
VURL, that doesn't prevent using them with keys that use VURL. Of
course, they won't verify the content on transfer, and fsck will warn
that it doesn't know about VURL. So there's not much problem with
starting to use VURL even when interoperating with old versions.
Sponsored-by: Joshua Antonishen on Patreon