Rather than wait a full second, which may be longer than needed, or too
short to get all the rename events, we start a mode where we wait 1/10th of
a second, and if there are Changes received, wait again. Basically we're
back in batch mode when this happens.
This cleaned up the code quite a bit; now the committer just looks at the
Change to see if it's a change that needs to have a transfer queued for it.
If I later want to add dropping keys for files that were removed, or
something like that, this should make it straightforward.
This also fixes a bug. In direct mode, moving a file out of an archive
directory failed to start a transfer to get its content. The problem
was that the file had not been committed to git yet, and so the transfer
code didn't want to touch it, since fileKey failed to get its key.
Only starting transfers after a commit avoids this problem.
Looking through the git sources (documentation is unclear),
it seems commit doesn't ever trigger git-gc, mostly fetching and merging
seems to. I cannot easily override the setting in all those places, so
instead set gc.auto in git config when initializing a repository with
the assistant.
This does mean that the user cannot set gc.auto=0 and completely avoid
repacks, as the assistant does it daily. But, it only does it after there
are 100x the default number of loose objects, so this is probably not going
to be too annoying.
Pass subcommand as a regular param, which allows passing git parameters
like -c before it. This was already done in the pipeing set of functions,
but not the command running set.
Refactored annex link code into nice clean new library.
Audited and dealt with calls to createSymbolicLink.
Remaining calls are all safe, because:
Annex/Link.hs: ( liftIO $ createSymbolicLink linktarget file
only when core.symlinks=true
Assistant/WebApp/Configurators/Local.hs: createSymbolicLink link link
test if symlinks can be made
Command/Fix.hs: liftIO $ createSymbolicLink link file
command only works in indirect mode
Command/FromKey.hs: liftIO $ createSymbolicLink link file
command only works in indirect mode
Command/Indirect.hs: liftIO $ createSymbolicLink l f
refuses to run if core.symlinks=false
Init.hs: createSymbolicLink f f2
test if symlinks can be made
Remote/Directory.hs: go [file] = catchBoolIO $ createSymbolicLink file f >> return True
fast key linking; catches failure to make symlink and falls back to copy
Remote/Git.hs: liftIO $ catchBoolIO $ createSymbolicLink loc file >> return True
ditto
Upgrade/V1.hs: liftIO $ createSymbolicLink link f
v1 repos could not be on a filesystem w/o symlinks
Audited and dealt with calls to readSymbolicLink.
Remaining calls are all safe, because:
Annex/Link.hs: ( liftIO $ catchMaybeIO $ readSymbolicLink file
only when core.symlinks=true
Assistant/Threads/Watcher.hs: ifM ((==) (Just link) <$> liftIO (catchMaybeIO $ readSymbolicLink file))
code that fixes real symlinks when inotify sees them
It's ok to not fix psdueo-symlinks.
Assistant/Threads/Watcher.hs: mlink <- liftIO (catchMaybeIO $ readSymbolicLink file)
ditto
Command/Fix.hs: stopUnless ((/=) (Just link) <$> liftIO (catchMaybeIO $ readSymbolicLink file)) $ do
command only works in indirect mode
Upgrade/V1.hs: getsymlink = takeFileName <$> readSymbolicLink file
v1 repos could not be on a filesystem w/o symlinks
Audited and dealt with calls to isSymbolicLink.
(Typically used with getSymbolicLinkStatus, but that is just used because
getFileStatus is not as robust; it also works on pseudolinks.)
Remaining calls are all safe, because:
Assistant/Threads/SanityChecker.hs: | isSymbolicLink s -> addsymlink file ms
only handles staging of symlinks that were somehow not staged
(might need to be updated to support pseudolinks, but this is
only a belt-and-suspenders check anyway, and I've never seen the code run)
Command/Add.hs: if isSymbolicLink s || not (isRegularFile s)
avoids adding symlinks to the annex, so not relevant
Command/Indirect.hs: | isSymbolicLink s -> void $ flip whenAnnexed f $
only allowed on systems that support symlinks
Command/Indirect.hs: whenM (liftIO $ not . isSymbolicLink <$> getSymbolicLinkStatus f) $ do
ditto
Seek.hs:notSymlink f = liftIO $ not . isSymbolicLink <$> getSymbolicLinkStatus f
used to find unlocked files, only relevant in indirect mode
Utility/FSEvents.hs: | Files.isSymbolicLink s = runhook addSymlinkHook $ Just s
Utility/FSEvents.hs: | Files.isSymbolicLink s ->
Utility/INotify.hs: | Files.isSymbolicLink s ->
Utility/INotify.hs: checkfiletype Files.isSymbolicLink addSymlinkHook f
Utility/Kqueue.hs: | Files.isSymbolicLink s = callhook addSymlinkHook (Just s) change
all above are lower-level, not relevant
Audited and dealt with calls to isSymLink.
Remaining calls are all safe, because:
Annex/Direct.hs: | isSymLink (getmode item) =
This is looking at git diff-tree objects, not files on disk
Command/Unused.hs: | isSymLink (LsTree.mode l) = do
This is looking at git ls-tree, not file on disk
Utility/FileMode.hs:isSymLink :: FileMode -> Bool
Utility/FileMode.hs:isSymLink = checkMode symbolicLinkMode
low-level
Done!!
git annex init probes for crippled filesystems, and sets direct mode, as
well as `annex.crippledfilesystem`.
Avoid manipulating permissions of files on crippled filesystems.
That would likely cause an exception to be thrown.
Very basic support in Command.Add for cripped filesystems; avoids the lock
down entirely since doing it needs both permissions and hard links.
Will make this better soon.
Making the pre-commit hook look at git diff-index to find changed direct
mode files and update the mappings works pretty well.
One case where it does not work is when a file is git annex added, and then
git rmed, and then this is committed. That's a no-op commit, so the hook
probably doesn't even run, and it certianly never notices that the file
was deleted, so the mapping will still have the original filename in it.
For this and other reasons, it's important that the mappings still be
treated as possibly inconsistent.
Also, the assistant now allows the pre-commit hook to run when in direct
mode, so the mappings also get updated there.
Now there's a Config type, that's extracted from the git config at startup.
Note that laziness means that individual config values are only looked up
and parsed on demand, and so we get implicit memoization for all of them.
So this is not only prettier and more type safe, it optimises several
places that didn't have explicit memoization before. As well as getting rid
of the ugly explicit memoization code.
Not yet done for annex.<remote>.* configuration settings.
Converted several threads to run in the monad.
Added a lot of useful combinators for working with the monad.
Now the monad includes the name of the thread.
Some debugging messages are disabled pending converting other threads.
I now have this topology working:
assistant ---> {bare repo, special remote} <--- assistant
And, I think, also this one:
+----------- bare repo --------+
v v
assistant ---> special remote <--- assistant
While before with assistant <---> assistant connections, both sides got
location info updated after a transfer, in this topology, the bare repo
*might* get its location info updated, but the other assistant has no way to
know that it did. And a special remote doesn't record location info,
so transfers to it won't propigate out location log changes at all.
So, for these to work, after a transfer succeeds, the git-annex branch
needs to be pushed. This is done by recording a synthetic commit has
occurred, which lets the pusher handle pushing out the change (which will
include actually committing any still journalled changes to the git-annex
branch).
Of course, this means rather a lot more syncing action than happened
before. At least the pusher bundles together very close together pushes,
somewhat. Currently it just waits 2 seconds between each push.
Both when queueing downloads, and uploads, consults the preferred content
settings.
I didn't make it check yet when requeing failed transfers or queuing
deferred downloads; dealing with the preferred content settings (or indeed,
other settings) changing while the assistant is running still needs work.
Makes it safe to use git annex unlock with the watcher/assistant.
And also to mix use of the watcher/assistant with regular files stored in git.
Long ago, I had avoided doing this check, except during the startup scan,
because it would be slow to run ls-files repeatedly.
But then I added the lsof check, and to make that fast, got it to detect
batch file adds. So let's move the ls-files check to also occur when it'll
have a batch, and can check them all with one call.
This does slow down adding a single file by just a bit, but really only
a little bit. (The lsof check is probably more expensive.) It also
speeds up the startup scan, especially when there are lots of new files
found by the scan.
Also, fixed the sleep for annex.delayadd to not run while the threadstate
lock is held, so it doesn't unnecessarily freeze everything else.
Also, --force no longer makes it skip the lsof check, which was not
documented, and seems never a good idea.
This doesn't avoid it sometimes attempting to commit when there are no
changes. Typically that happens when a change is pushed in from another
repo; the watcher sees the file and tries to stage it, resulting in an
empty commit. Really fixing that would probably use more CPU than
occasionally trying to make an empty commit.
However, this does save a lot of unnecessary work, as those empty commits
had to be synced out, which no longer happens.
I was seeing some interesting crashes after the previous commit,
when making file changes slightly faster than the assistant could keep up.
error: Ref refs/heads/master is at 7074f8e0a11110c532d06746e334f2fec6af6ab4 but expected 95ea86008d72a40d97a81cfc8fb47a0da92166bd
fatal: cannot lock HEAD ref
Committer crashed: git commit [Param "--allow-empty-message",Param "-m",Param "",Param "--allow-empty",Param "--quiet"] failed
Pusher crashed: thread blocked indefinitely in an STM transaction
Clearly the the merger ended up running at the same time as the committer,
and with both modifying HEAD the committer crashed. I fixed that by
making the Merger run its merge inside the annex monad, which avoids
it running concurrently with other git operations. Also by making
the committer not crash if git fails.
What I don't understand is why the pusher then crashed with a STM deadlock.
That must be in either the DaemonStatusHandle or the FailedPushMap,
and the latter is only used by the pusher. Did the committer's crash somehow
break STM?
The BlockedIndefinitelyOnSTM exception is described as:
-- |The thread is waiting to retry an STM transaction, but there are no
-- other references to any @TVar@s involved, so it can't ever continue.
If the Committer had a reference to a TVar and crashed, I can sort of see
this leading to that exception..
The crash was quite easy to reproduce after the previous commit, but
after making the above change, I have yet to see it again. Here's hoping.
Now an alert tracks files that have recently been added. As a large file
is added, it will have its own alert, that then combines with the tracker
when dones.
Also used for combining sanity checker alerts, as it could possibly want to
display a lot.
Added knownRemotes to DaemonStatus. This list is not entirely trivial to
calculate, and having it here should make it easier to add/remove remotes
on the fly later on. It did require plumbing the daemonstatus through to
some more threads.