When finishedLiveUpdate was run on a different key than expected, it
blocked forever waiting for an indication the database had been updated.
Since the journal is locked when finishedLiveUpdate runs, this could
also have caused other git-annex commands to hang.
It's possible for two processes or threads to both be doing the same
operation at the same time. Eg, both dropping the same key. If one
finishes and updates the rollingtotal, then the other one needs to be
prevented from later updating the rollingtotal as well. And they could
finish at the same time, or with some time in between.
Addressed this by making updateRepoSize be called with the journal
locked, and only once it's been determined that there is an actual
location change to record in the log. updateRepoSize waits for the
database to be updated.
When there is a redundant operation, updateRepoSize won't be called,
and the redundant LiveUpdate will be removed from the database on
garbage collection.
But: There will be a window where the redundant LiveUpdate is still
visible in the db, and processes can see it, combine it with the
rollingtotal, and arrive at the wrong size. This is a small window, but
it still ought to be addressed. Unsure if it would always be safe to
remove the redundant LiveUpdate? Consider the case where two drops and a
get are all running concurrently somehow, and the order they finish is
[drop, get, drop]. The second drop seems redundant to the first, but
it would not be safe to remove it. While this seems unlikely, it's hard
to rule out that a get and drop at different stages can both be running
at the same time.
When a live size change completes successfully, the same transaction
that removes it from the database updates the rolling total for its
repository.
The idea is that when RepoSizes is read, SizeChanges will be as
well, and cached locally. Any time a change is made, the local cache
will be updated. So by comparing the local cache with the current
SizeChanges, it can learn about size changes that were made by other
processes. Then read the LiveSizeChanges, and add that in to get a live
picture of the current sizes.
Also added a SizeChangeId. This allows 2 different threads, or
processes, to both record a live size change for the same repo and key,
and update their own information without stepping on one-another's toes.
I've tested the behavior of the thread that waits for the LiveUpdate to
be finished, and it does get signaled and exit cleanly when the
LiveUpdate is GCed instead.
Made finishedLiveUpdate wait for the thread to finish updating the
database.
There is a case where GC doesn't happen in time and the database is left
with a live update recorded in it. This should not be a problem as such
stale data can also happen when interrupted and will need to be detected
when loading the database.
Balanced preferred content expressions now call startLiveUpdate.
copy and get do check preferred content, so need to prepareLiveUpdate.
move and mirror do not, but copy is implemented using move, so move also
needed to have a LiveUpdate plumbed through.
Each command that first checks preferred content (and/or required
content) and then does something that can change the sizes of
repositories needs to call prepareLiveUpdate, and plumb it through the
preferred content check and the location log update.
So far, only Command.Drop is done. Many other commands that don't need
to do this have been updated to keep working.
There may be some calls to NoLiveUpdate in places where that should be
done. All will need to be double checked.
Not currently in a compilable state.
A new repo that has no location log info yet, but has an entry in
uuid.log has 0 size, so make RepoSize aware of that.
Note that a new repo that does not yet appear in uuid.log will still not
be displayed.
When a remote is added but not synced with yet, it has no uuid.log
entry. If git-annex maxsize is used to configure that remote, it needs
to appear in the maxsize table, and the change to Command.MaxSize takes
care of that.
When the specified number of copies is > 1, and some repositories are
too full, it can be better to move content from them to other less full
repositories, in order to make space for new content.
annex.fullybalancedthreshhold is documented, but not implemented yet
This is not tested very well yet, and is known to sometimes take several
runs to stabalize.
Might want to make --rebalance turn balanced=group:N where N > 1
to fullysizebalanced=group:N. Have not yet determined if that will
improve situations enough to be worth the extra work.
Benchmarking a git-annex branch with half a million files changed,
it takes about 1 minute to update the RepoSizes. So this will display
the message after a few seconds.
The use of catObjectStream is optimally fast. Although it might be
possible to combine this with git-annex branch merge to avoid some
redundant work.
Benchmarking, a git-annex branch that had 100000 files changed
took less than 1.88 seconds to run through this.
updateRepoSize is only called on the UUID of a repository, not any
cluster it might be a node of. But overLocationLogs and overLocationLogsJournal
were inclusing cluster UUIDs. So it was inconsistent.
Currently I don't see any reason to calculate RepoSize for a cluster.
It's not even clear what it should mean, the total size of all nodes, or
the amount of information stored in the cluster in total?