2011-07-01 19:24:07 +00:00
|
|
|
{- git-annex presence log
|
|
|
|
-
|
|
|
|
- This is used to store presence information in the git-annex branch in
|
|
|
|
- a way that can be union merged.
|
|
|
|
-
|
|
|
|
- A line of the log will look like: "date N INFO"
|
2015-10-12 18:46:28 +00:00
|
|
|
- Where N=1 when the INFO is present, 0 otherwise.
|
2011-07-01 19:24:07 +00:00
|
|
|
-
|
2024-08-14 17:46:44 +00:00
|
|
|
- Copyright 2010-2024 Joey Hess <id@joeyh.name>
|
2011-07-01 19:24:07 +00:00
|
|
|
-
|
2019-03-13 19:48:14 +00:00
|
|
|
- Licensed under the GNU AGPL version 3 or higher.
|
2011-07-01 19:24:07 +00:00
|
|
|
-}
|
|
|
|
|
2011-10-15 20:21:08 +00:00
|
|
|
module Logs.Presence (
|
2013-08-31 21:38:33 +00:00
|
|
|
module X,
|
2011-07-01 21:15:46 +00:00
|
|
|
addLog,
|
deal better with clock skew situations, using vector clocks
* Deal with clock skew, both forwards and backwards, when logging
information to the git-annex branch.
* GIT_ANNEX_VECTOR_CLOCK can now be set to a fixed value (eg 1)
rather than needing to be advanced each time a new change is made.
* Misuse of GIT_ANNEX_VECTOR_CLOCK will no longer confuse git-annex.
When changing a file in the git-annex branch, the vector clock to use is now
determined by first looking at the current time (or GIT_ANNEX_VECTOR_CLOCK
when set), and comparing it to the newest vector clock already in use in
that file. If a newer time stamp was already in use, advance it forward by
a second instead.
When the clock is set to a time in the past, this avoids logging with
an old timestamp, which would risk that log line later being ignored in favor
of "newer" line that is really not newer.
When a log entry has been made with a clock that was set far ahead in the
future, this avoids newer information being logged with an older timestamp
and so being ignored in favor of that future-timestamped information.
Once all clocks get fixed, this will result in the vector clocks being
incremented, until finally enough time has passed that time gets back ahead
of the vector clock value, and then it will return to usual operation.
(This latter situation is not ideal, but it seems the best that can be done.
The issue with it is, since all writers will be incrementing the last
vector clock they saw, there's no way to tell when one writer made a write
significantly later in time than another, so the earlier write might
arbitrarily be picked when merging. This problem is why git-annex uses
timestamps in the first place, rather than pure vector clocks.)
Advancing forward by 1 second is somewhat arbitrary. setDead
advances a timestamp by just 1 picosecond, and the vector clock could
too. But then it would interfere with setDead, which wants to be
overrulled by any change. So it could use 2 picoseconds or something,
but that seems weird. It could just as well advance it forward by a
minute or whatever, but then it would be harder for real time to catch
up with the vector clock when forward clock slew had happened.
A complication is that many log files contain several different peices of
information, and it may be best to only use vector clocks for the same peice
of information. For example, a key's location log file contains
InfoPresent/InfoMissing for each UUID, and it only looks at the vector
clocks for the UUID that is being changed, and not other UUIDs.
Although exactly where the dividing line is can be hard to determine.
Consider metadata logs, where a field "tag" can have multiple values set
at different times. Should it advance forward past the last tag?
Probably. What about when a different field is set, should it look at
the clocks of other fields? Perhaps not, but currently it does, and
this does not seems like it will cause any problems.
Another one I'm not entirely sure about is the export log, which is
keyed by (fromuuid, touuid). So if multiple repos are exporting to the
same remote, different vector clocks can be used for that remote.
It looks like that's probably ok, because it does not try to determine
what order things occurred when there was an export conflict.
Sponsored-by: Jochen Bartl on Patreon
2021-08-03 20:45:20 +00:00
|
|
|
addLog',
|
2015-10-12 18:46:28 +00:00
|
|
|
maybeAddLog,
|
2011-07-01 19:24:07 +00:00
|
|
|
readLog,
|
2023-12-08 17:23:03 +00:00
|
|
|
presentLogInfo,
|
|
|
|
notPresentLogInfo,
|
2015-04-01 21:53:16 +00:00
|
|
|
historicalLogInfo,
|
2024-08-14 17:46:44 +00:00
|
|
|
parseLogInfo,
|
2011-07-01 19:24:07 +00:00
|
|
|
) where
|
|
|
|
|
2013-08-31 21:38:33 +00:00
|
|
|
import Logs.Presence.Pure as X
|
2016-01-20 20:36:33 +00:00
|
|
|
import Annex.Common
|
2017-08-14 17:55:38 +00:00
|
|
|
import Annex.VectorClock
|
2011-10-04 04:40:47 +00:00
|
|
|
import qualified Annex.Branch
|
2014-02-06 16:43:56 +00:00
|
|
|
import Git.Types (RefDate)
|
2011-07-01 19:24:07 +00:00
|
|
|
|
2024-08-14 17:46:44 +00:00
|
|
|
import qualified Data.ByteString.Lazy as L
|
|
|
|
|
deal better with clock skew situations, using vector clocks
* Deal with clock skew, both forwards and backwards, when logging
information to the git-annex branch.
* GIT_ANNEX_VECTOR_CLOCK can now be set to a fixed value (eg 1)
rather than needing to be advanced each time a new change is made.
* Misuse of GIT_ANNEX_VECTOR_CLOCK will no longer confuse git-annex.
When changing a file in the git-annex branch, the vector clock to use is now
determined by first looking at the current time (or GIT_ANNEX_VECTOR_CLOCK
when set), and comparing it to the newest vector clock already in use in
that file. If a newer time stamp was already in use, advance it forward by
a second instead.
When the clock is set to a time in the past, this avoids logging with
an old timestamp, which would risk that log line later being ignored in favor
of "newer" line that is really not newer.
When a log entry has been made with a clock that was set far ahead in the
future, this avoids newer information being logged with an older timestamp
and so being ignored in favor of that future-timestamped information.
Once all clocks get fixed, this will result in the vector clocks being
incremented, until finally enough time has passed that time gets back ahead
of the vector clock value, and then it will return to usual operation.
(This latter situation is not ideal, but it seems the best that can be done.
The issue with it is, since all writers will be incrementing the last
vector clock they saw, there's no way to tell when one writer made a write
significantly later in time than another, so the earlier write might
arbitrarily be picked when merging. This problem is why git-annex uses
timestamps in the first place, rather than pure vector clocks.)
Advancing forward by 1 second is somewhat arbitrary. setDead
advances a timestamp by just 1 picosecond, and the vector clock could
too. But then it would interfere with setDead, which wants to be
overrulled by any change. So it could use 2 picoseconds or something,
but that seems weird. It could just as well advance it forward by a
minute or whatever, but then it would be harder for real time to catch
up with the vector clock when forward clock slew had happened.
A complication is that many log files contain several different peices of
information, and it may be best to only use vector clocks for the same peice
of information. For example, a key's location log file contains
InfoPresent/InfoMissing for each UUID, and it only looks at the vector
clocks for the UUID that is being changed, and not other UUIDs.
Although exactly where the dividing line is can be hard to determine.
Consider metadata logs, where a field "tag" can have multiple values set
at different times. Should it advance forward past the last tag?
Probably. What about when a different field is set, should it look at
the clocks of other fields? Perhaps not, but currently it does, and
this does not seems like it will cause any problems.
Another one I'm not entirely sure about is the export log, which is
keyed by (fromuuid, touuid). So if multiple repos are exporting to the
same remote, different vector clocks can be used for that remote.
It looks like that's probably ok, because it does not try to determine
what order things occurred when there was an export conflict.
Sponsored-by: Jochen Bartl on Patreon
2021-08-03 20:45:20 +00:00
|
|
|
{- Adds to the log, removing any LogLines that are obsoleted. -}
|
|
|
|
addLog :: Annex.Branch.RegardingUUID -> RawFilePath -> LogStatus -> LogInfo -> Annex ()
|
|
|
|
addLog ru file logstatus loginfo =
|
|
|
|
addLog' ru file logstatus loginfo =<< currentVectorClock
|
|
|
|
|
|
|
|
addLog' :: Annex.Branch.RegardingUUID -> RawFilePath -> LogStatus -> LogInfo -> CandidateVectorClock -> Annex ()
|
|
|
|
addLog' ru file logstatus loginfo c =
|
split out appending to journal from writing, high level only
Currently this is not an improvement, but it allows for optimising
appendJournalFile later. With an optimised appendJournalFile, this will
greatly speed up access patterns like git-annex addurl of a lot of urls
to the same key, where the log file can grow rather large. Appending
rather than re-writing the journal file for each line can save a lot of
disk writes.
It still has to read the current journal or branch file, to check
if it can append to it, and so when the journal file does not exist yet,
it can write the old content from the branch to it. Probably the re-reads
are better cached by the filesystem than repeated writes. (If the
re-reads turn out to keep performance bad, they could be eliminated, at
the cost of not being able to compact the log when replacing old
information in it. That could be enabled by a switch.)
While the immediate need is to affect addurl writes, it was implemented
at the level of presence logs, so will also perhaps speed up location logs.
The only added overhead is the call to isNewInfo, which only needs to
compare ByteStrings. Helping to balance that out, it avoids compactLog
when it's able to append.
Sponsored-by: Dartmouth College's DANDI project
2022-07-18 17:22:50 +00:00
|
|
|
Annex.Branch.changeOrAppend ru file $ \b ->
|
deal better with clock skew situations, using vector clocks
* Deal with clock skew, both forwards and backwards, when logging
information to the git-annex branch.
* GIT_ANNEX_VECTOR_CLOCK can now be set to a fixed value (eg 1)
rather than needing to be advanced each time a new change is made.
* Misuse of GIT_ANNEX_VECTOR_CLOCK will no longer confuse git-annex.
When changing a file in the git-annex branch, the vector clock to use is now
determined by first looking at the current time (or GIT_ANNEX_VECTOR_CLOCK
when set), and comparing it to the newest vector clock already in use in
that file. If a newer time stamp was already in use, advance it forward by
a second instead.
When the clock is set to a time in the past, this avoids logging with
an old timestamp, which would risk that log line later being ignored in favor
of "newer" line that is really not newer.
When a log entry has been made with a clock that was set far ahead in the
future, this avoids newer information being logged with an older timestamp
and so being ignored in favor of that future-timestamped information.
Once all clocks get fixed, this will result in the vector clocks being
incremented, until finally enough time has passed that time gets back ahead
of the vector clock value, and then it will return to usual operation.
(This latter situation is not ideal, but it seems the best that can be done.
The issue with it is, since all writers will be incrementing the last
vector clock they saw, there's no way to tell when one writer made a write
significantly later in time than another, so the earlier write might
arbitrarily be picked when merging. This problem is why git-annex uses
timestamps in the first place, rather than pure vector clocks.)
Advancing forward by 1 second is somewhat arbitrary. setDead
advances a timestamp by just 1 picosecond, and the vector clock could
too. But then it would interfere with setDead, which wants to be
overrulled by any change. So it could use 2 picoseconds or something,
but that seems weird. It could just as well advance it forward by a
minute or whatever, but then it would be harder for real time to catch
up with the vector clock when forward clock slew had happened.
A complication is that many log files contain several different peices of
information, and it may be best to only use vector clocks for the same peice
of information. For example, a key's location log file contains
InfoPresent/InfoMissing for each UUID, and it only looks at the vector
clocks for the UUID that is being changed, and not other UUIDs.
Although exactly where the dividing line is can be hard to determine.
Consider metadata logs, where a field "tag" can have multiple values set
at different times. Should it advance forward past the last tag?
Probably. What about when a different field is set, should it look at
the clocks of other fields? Perhaps not, but currently it does, and
this does not seems like it will cause any problems.
Another one I'm not entirely sure about is the export log, which is
keyed by (fromuuid, touuid). So if multiple repos are exporting to the
same remote, different vector clocks can be used for that remote.
It looks like that's probably ok, because it does not try to determine
what order things occurred when there was an export conflict.
Sponsored-by: Jochen Bartl on Patreon
2021-08-03 20:45:20 +00:00
|
|
|
let old = parseLog b
|
|
|
|
line = genLine logstatus loginfo c old
|
split out appending to journal from writing, high level only
Currently this is not an improvement, but it allows for optimising
appendJournalFile later. With an optimised appendJournalFile, this will
greatly speed up access patterns like git-annex addurl of a lot of urls
to the same key, where the log file can grow rather large. Appending
rather than re-writing the journal file for each line can save a lot of
disk writes.
It still has to read the current journal or branch file, to check
if it can append to it, and so when the journal file does not exist yet,
it can write the old content from the branch to it. Probably the re-reads
are better cached by the filesystem than repeated writes. (If the
re-reads turn out to keep performance bad, they could be eliminated, at
the cost of not being able to compact the log when replacing old
information in it. That could be enabled by a switch.)
While the immediate need is to affect addurl writes, it was implemented
at the level of presence logs, so will also perhaps speed up location logs.
The only added overhead is the call to isNewInfo, which only needs to
compare ByteStrings. Helping to balance that out, it avoids compactLog
when it's able to append.
Sponsored-by: Dartmouth College's DANDI project
2022-07-18 17:22:50 +00:00
|
|
|
in if isNewInfo line old
|
|
|
|
then Annex.Branch.Append $ buildLog [line]
|
|
|
|
else Annex.Branch.Change $ buildLog $
|
|
|
|
compactLog (line : old)
|
2011-07-01 21:15:46 +00:00
|
|
|
|
2015-10-12 18:46:28 +00:00
|
|
|
{- When a LogLine already exists with the same status and info, but an
|
|
|
|
- older timestamp, that LogLine is preserved, rather than updating the log
|
|
|
|
- with a newer timestamp.
|
2024-08-15 17:27:14 +00:00
|
|
|
-
|
partially fix concurrency issue in updating the rollingtotal
It's possible for two processes or threads to both be doing the same
operation at the same time. Eg, both dropping the same key. If one
finishes and updates the rollingtotal, then the other one needs to be
prevented from later updating the rollingtotal as well. And they could
finish at the same time, or with some time in between.
Addressed this by making updateRepoSize be called with the journal
locked, and only once it's been determined that there is an actual
location change to record in the log. updateRepoSize waits for the
database to be updated.
When there is a redundant operation, updateRepoSize won't be called,
and the redundant LiveUpdate will be removed from the database on
garbage collection.
But: There will be a window where the redundant LiveUpdate is still
visible in the db, and processes can see it, combine it with the
rollingtotal, and arrive at the wrong size. This is a small window, but
it still ought to be addressed. Unsure if it would always be safe to
remove the redundant LiveUpdate? Consider the case where two drops and a
get are all running concurrently somehow, and the order they finish is
[drop, get, drop]. The second drop seems redundant to the first, but
it would not be safe to remove it. While this seems unlikely, it's hard
to rule out that a get and drop at different stages can both be running
at the same time.
2024-08-26 13:43:32 +00:00
|
|
|
- When the log was changed, the onchange action is run (with the journal
|
|
|
|
- still locked to prevent any concurrent changes) and True is returned.
|
2015-10-12 18:46:28 +00:00
|
|
|
-}
|
partially fix concurrency issue in updating the rollingtotal
It's possible for two processes or threads to both be doing the same
operation at the same time. Eg, both dropping the same key. If one
finishes and updates the rollingtotal, then the other one needs to be
prevented from later updating the rollingtotal as well. And they could
finish at the same time, or with some time in between.
Addressed this by making updateRepoSize be called with the journal
locked, and only once it's been determined that there is an actual
location change to record in the log. updateRepoSize waits for the
database to be updated.
When there is a redundant operation, updateRepoSize won't be called,
and the redundant LiveUpdate will be removed from the database on
garbage collection.
But: There will be a window where the redundant LiveUpdate is still
visible in the db, and processes can see it, combine it with the
rollingtotal, and arrive at the wrong size. This is a small window, but
it still ought to be addressed. Unsure if it would always be safe to
remove the redundant LiveUpdate? Consider the case where two drops and a
get are all running concurrently somehow, and the order they finish is
[drop, get, drop]. The second drop seems redundant to the first, but
it would not be safe to remove it. While this seems unlikely, it's hard
to rule out that a get and drop at different stages can both be running
at the same time.
2024-08-26 13:43:32 +00:00
|
|
|
maybeAddLog :: Annex.Branch.RegardingUUID -> RawFilePath -> LogStatus -> LogInfo -> Annex () -> Annex Bool
|
|
|
|
maybeAddLog ru file logstatus loginfo onchange = do
|
deal better with clock skew situations, using vector clocks
* Deal with clock skew, both forwards and backwards, when logging
information to the git-annex branch.
* GIT_ANNEX_VECTOR_CLOCK can now be set to a fixed value (eg 1)
rather than needing to be advanced each time a new change is made.
* Misuse of GIT_ANNEX_VECTOR_CLOCK will no longer confuse git-annex.
When changing a file in the git-annex branch, the vector clock to use is now
determined by first looking at the current time (or GIT_ANNEX_VECTOR_CLOCK
when set), and comparing it to the newest vector clock already in use in
that file. If a newer time stamp was already in use, advance it forward by
a second instead.
When the clock is set to a time in the past, this avoids logging with
an old timestamp, which would risk that log line later being ignored in favor
of "newer" line that is really not newer.
When a log entry has been made with a clock that was set far ahead in the
future, this avoids newer information being logged with an older timestamp
and so being ignored in favor of that future-timestamped information.
Once all clocks get fixed, this will result in the vector clocks being
incremented, until finally enough time has passed that time gets back ahead
of the vector clock value, and then it will return to usual operation.
(This latter situation is not ideal, but it seems the best that can be done.
The issue with it is, since all writers will be incrementing the last
vector clock they saw, there's no way to tell when one writer made a write
significantly later in time than another, so the earlier write might
arbitrarily be picked when merging. This problem is why git-annex uses
timestamps in the first place, rather than pure vector clocks.)
Advancing forward by 1 second is somewhat arbitrary. setDead
advances a timestamp by just 1 picosecond, and the vector clock could
too. But then it would interfere with setDead, which wants to be
overrulled by any change. So it could use 2 picoseconds or something,
but that seems weird. It could just as well advance it forward by a
minute or whatever, but then it would be harder for real time to catch
up with the vector clock when forward clock slew had happened.
A complication is that many log files contain several different peices of
information, and it may be best to only use vector clocks for the same peice
of information. For example, a key's location log file contains
InfoPresent/InfoMissing for each UUID, and it only looks at the vector
clocks for the UUID that is being changed, and not other UUIDs.
Although exactly where the dividing line is can be hard to determine.
Consider metadata logs, where a field "tag" can have multiple values set
at different times. Should it advance forward past the last tag?
Probably. What about when a different field is set, should it look at
the clocks of other fields? Perhaps not, but currently it does, and
this does not seems like it will cause any problems.
Another one I'm not entirely sure about is the export log, which is
keyed by (fromuuid, touuid). So if multiple repos are exporting to the
same remote, different vector clocks can be used for that remote.
It looks like that's probably ok, because it does not try to determine
what order things occurred when there was an export conflict.
Sponsored-by: Jochen Bartl on Patreon
2021-08-03 20:45:20 +00:00
|
|
|
c <- currentVectorClock
|
partially fix concurrency issue in updating the rollingtotal
It's possible for two processes or threads to both be doing the same
operation at the same time. Eg, both dropping the same key. If one
finishes and updates the rollingtotal, then the other one needs to be
prevented from later updating the rollingtotal as well. And they could
finish at the same time, or with some time in between.
Addressed this by making updateRepoSize be called with the journal
locked, and only once it's been determined that there is an actual
location change to record in the log. updateRepoSize waits for the
database to be updated.
When there is a redundant operation, updateRepoSize won't be called,
and the redundant LiveUpdate will be removed from the database on
garbage collection.
But: There will be a window where the redundant LiveUpdate is still
visible in the db, and processes can see it, combine it with the
rollingtotal, and arrive at the wrong size. This is a small window, but
it still ought to be addressed. Unsure if it would always be safe to
remove the redundant LiveUpdate? Consider the case where two drops and a
get are all running concurrently somehow, and the order they finish is
[drop, get, drop]. The second drop seems redundant to the first, but
it would not be safe to remove it. While this seems unlikely, it's hard
to rule out that a get and drop at different stages can both be running
at the same time.
2024-08-26 13:43:32 +00:00
|
|
|
let f = \b ->
|
deal better with clock skew situations, using vector clocks
* Deal with clock skew, both forwards and backwards, when logging
information to the git-annex branch.
* GIT_ANNEX_VECTOR_CLOCK can now be set to a fixed value (eg 1)
rather than needing to be advanced each time a new change is made.
* Misuse of GIT_ANNEX_VECTOR_CLOCK will no longer confuse git-annex.
When changing a file in the git-annex branch, the vector clock to use is now
determined by first looking at the current time (or GIT_ANNEX_VECTOR_CLOCK
when set), and comparing it to the newest vector clock already in use in
that file. If a newer time stamp was already in use, advance it forward by
a second instead.
When the clock is set to a time in the past, this avoids logging with
an old timestamp, which would risk that log line later being ignored in favor
of "newer" line that is really not newer.
When a log entry has been made with a clock that was set far ahead in the
future, this avoids newer information being logged with an older timestamp
and so being ignored in favor of that future-timestamped information.
Once all clocks get fixed, this will result in the vector clocks being
incremented, until finally enough time has passed that time gets back ahead
of the vector clock value, and then it will return to usual operation.
(This latter situation is not ideal, but it seems the best that can be done.
The issue with it is, since all writers will be incrementing the last
vector clock they saw, there's no way to tell when one writer made a write
significantly later in time than another, so the earlier write might
arbitrarily be picked when merging. This problem is why git-annex uses
timestamps in the first place, rather than pure vector clocks.)
Advancing forward by 1 second is somewhat arbitrary. setDead
advances a timestamp by just 1 picosecond, and the vector clock could
too. But then it would interfere with setDead, which wants to be
overrulled by any change. So it could use 2 picoseconds or something,
but that seems weird. It could just as well advance it forward by a
minute or whatever, but then it would be harder for real time to catch
up with the vector clock when forward clock slew had happened.
A complication is that many log files contain several different peices of
information, and it may be best to only use vector clocks for the same peice
of information. For example, a key's location log file contains
InfoPresent/InfoMissing for each UUID, and it only looks at the vector
clocks for the UUID that is being changed, and not other UUIDs.
Although exactly where the dividing line is can be hard to determine.
Consider metadata logs, where a field "tag" can have multiple values set
at different times. Should it advance forward past the last tag?
Probably. What about when a different field is set, should it look at
the clocks of other fields? Perhaps not, but currently it does, and
this does not seems like it will cause any problems.
Another one I'm not entirely sure about is the export log, which is
keyed by (fromuuid, touuid). So if multiple repos are exporting to the
same remote, different vector clocks can be used for that remote.
It looks like that's probably ok, because it does not try to determine
what order things occurred when there was an export conflict.
Sponsored-by: Jochen Bartl on Patreon
2021-08-03 20:45:20 +00:00
|
|
|
let old = parseLog b
|
|
|
|
line = genLine logstatus loginfo c old
|
|
|
|
in do
|
|
|
|
m <- insertNewStatus line $ logMap old
|
|
|
|
return $ buildLog $ mapLog m
|
partially fix concurrency issue in updating the rollingtotal
It's possible for two processes or threads to both be doing the same
operation at the same time. Eg, both dropping the same key. If one
finishes and updates the rollingtotal, then the other one needs to be
prevented from later updating the rollingtotal as well. And they could
finish at the same time, or with some time in between.
Addressed this by making updateRepoSize be called with the journal
locked, and only once it's been determined that there is an actual
location change to record in the log. updateRepoSize waits for the
database to be updated.
When there is a redundant operation, updateRepoSize won't be called,
and the redundant LiveUpdate will be removed from the database on
garbage collection.
But: There will be a window where the redundant LiveUpdate is still
visible in the db, and processes can see it, combine it with the
rollingtotal, and arrive at the wrong size. This is a small window, but
it still ought to be addressed. Unsure if it would always be safe to
remove the redundant LiveUpdate? Consider the case where two drops and a
get are all running concurrently somehow, and the order they finish is
[drop, get, drop]. The second drop seems redundant to the first, but
it would not be safe to remove it. While this seems unlikely, it's hard
to rule out that a get and drop at different stages can both be running
at the same time.
2024-08-26 13:43:32 +00:00
|
|
|
Annex.Branch.maybeChange ru file f onchange
|
deal better with clock skew situations, using vector clocks
* Deal with clock skew, both forwards and backwards, when logging
information to the git-annex branch.
* GIT_ANNEX_VECTOR_CLOCK can now be set to a fixed value (eg 1)
rather than needing to be advanced each time a new change is made.
* Misuse of GIT_ANNEX_VECTOR_CLOCK will no longer confuse git-annex.
When changing a file in the git-annex branch, the vector clock to use is now
determined by first looking at the current time (or GIT_ANNEX_VECTOR_CLOCK
when set), and comparing it to the newest vector clock already in use in
that file. If a newer time stamp was already in use, advance it forward by
a second instead.
When the clock is set to a time in the past, this avoids logging with
an old timestamp, which would risk that log line later being ignored in favor
of "newer" line that is really not newer.
When a log entry has been made with a clock that was set far ahead in the
future, this avoids newer information being logged with an older timestamp
and so being ignored in favor of that future-timestamped information.
Once all clocks get fixed, this will result in the vector clocks being
incremented, until finally enough time has passed that time gets back ahead
of the vector clock value, and then it will return to usual operation.
(This latter situation is not ideal, but it seems the best that can be done.
The issue with it is, since all writers will be incrementing the last
vector clock they saw, there's no way to tell when one writer made a write
significantly later in time than another, so the earlier write might
arbitrarily be picked when merging. This problem is why git-annex uses
timestamps in the first place, rather than pure vector clocks.)
Advancing forward by 1 second is somewhat arbitrary. setDead
advances a timestamp by just 1 picosecond, and the vector clock could
too. But then it would interfere with setDead, which wants to be
overrulled by any change. So it could use 2 picoseconds or something,
but that seems weird. It could just as well advance it forward by a
minute or whatever, but then it would be harder for real time to catch
up with the vector clock when forward clock slew had happened.
A complication is that many log files contain several different peices of
information, and it may be best to only use vector clocks for the same peice
of information. For example, a key's location log file contains
InfoPresent/InfoMissing for each UUID, and it only looks at the vector
clocks for the UUID that is being changed, and not other UUIDs.
Although exactly where the dividing line is can be hard to determine.
Consider metadata logs, where a field "tag" can have multiple values set
at different times. Should it advance forward past the last tag?
Probably. What about when a different field is set, should it look at
the clocks of other fields? Perhaps not, but currently it does, and
this does not seems like it will cause any problems.
Another one I'm not entirely sure about is the export log, which is
keyed by (fromuuid, touuid). So if multiple repos are exporting to the
same remote, different vector clocks can be used for that remote.
It looks like that's probably ok, because it does not try to determine
what order things occurred when there was an export conflict.
Sponsored-by: Jochen Bartl on Patreon
2021-08-03 20:45:20 +00:00
|
|
|
|
|
|
|
genLine :: LogStatus -> LogInfo -> CandidateVectorClock -> [LogLine] -> LogLine
|
|
|
|
genLine logstatus loginfo c old = LogLine c' logstatus loginfo
|
|
|
|
where
|
|
|
|
oldcs = map date (filter (\l -> info l == loginfo) old)
|
|
|
|
c' = advanceVectorClock c oldcs
|
2015-10-12 18:46:28 +00:00
|
|
|
|
2011-07-01 19:24:07 +00:00
|
|
|
{- Reads a log file.
|
|
|
|
- Note that the LogLines returned may be in any order. -}
|
2019-11-26 19:27:22 +00:00
|
|
|
readLog :: RawFilePath -> Annex [LogLine]
|
2012-06-29 14:00:05 +00:00
|
|
|
readLog = parseLog <$$> Annex.Branch.get
|
2011-07-01 19:24:07 +00:00
|
|
|
|
2023-12-08 17:23:03 +00:00
|
|
|
{- Reads a log and returns only the info that is still present. -}
|
|
|
|
presentLogInfo :: RawFilePath -> Annex [LogInfo]
|
|
|
|
presentLogInfo file = map info . filterPresent <$> readLog file
|
2015-04-01 21:53:16 +00:00
|
|
|
|
2023-12-08 17:23:03 +00:00
|
|
|
{- Reads a log and returns only the info that is no longer present. -}
|
|
|
|
notPresentLogInfo :: RawFilePath -> Annex [LogInfo]
|
|
|
|
notPresentLogInfo file = map info . filterNotPresent <$> readLog file
|
2014-02-06 16:43:56 +00:00
|
|
|
|
|
|
|
{- Reads a historical version of a log and returns the info that was in
|
|
|
|
- effect at that time.
|
|
|
|
-
|
|
|
|
- The date is formatted as shown in gitrevisions man page.
|
|
|
|
-}
|
2019-11-26 19:27:22 +00:00
|
|
|
historicalLogInfo :: RefDate -> RawFilePath -> Annex [LogInfo]
|
2024-08-14 17:46:44 +00:00
|
|
|
historicalLogInfo refdate file = parseLogInfo
|
2014-02-06 16:43:56 +00:00
|
|
|
<$> Annex.Branch.getHistorical refdate file
|
2024-08-14 17:46:44 +00:00
|
|
|
|
|
|
|
parseLogInfo :: L.ByteString -> [LogInfo]
|
|
|
|
parseLogInfo = map info . filterPresent . parseLog
|