Dealing with a race without using locking is exceedingly difficult and tricky.
Fully tested, I hope.
There are three places left where the branch can be updated, that are not
covered by the race recovery code. Let's prove they're all immune to the
race:
1. tryFastForwardTo checks to see if a fast-forward can be done,
and then does git-update-ref on the branch to fast-forward it.
If a push comes in before the check, then either no fast-forward
will be done (ok), or the push set the branch to a ref that can
still be fast-forwarded (also ok)
If a push comes in after the check, the git-update-ref will
undo the ref change made by the push. It's as if the push did not come
in, and the next git-push will see this, and try to re-do it.
(acceptable)
2. When creating the branch for the very first time, an empty index
is created, and a commit of it made to the branch. The commit's ref
is recorded as the current state of the index. If a push came in
during that, it will be noticed the next time a commit is made to the
branch, since the branch will have changed. (ok)
3. Creating the branch from an existing remote branch involves making
the branch, and then getting its ref, and recording that the index
reflects that ref.
If a push creates the branch first, git-branch will fail (ok).
If the branch is created and a racing push is then able to change it
(highly unlikely!) we're still ok, because it first records the ref into
the index.lck, and then updating the index. The race can cause the
index.lck to have the old branch ref, while the index has the newly pushed
branch merged into it, but that only results in an unnecessary update of
the index file later on.
Always merge the git-annex branch into .git/annex/index before making a
commit from the index.
This ensures that, when the branch has been changed in any way
(by a push being received, or changes pulled directly into it, or
even by the user checking it out, and committing a change), the index
reflects those changes.
This is much too slow; it needs to be optimised to only update the
index when the branch has really changed, not every time.
Also, there is an unhandled race, when a change is made to the branch
right after the index gets updated. I left it in for now because it's
unlikely and I didn't want to complicate things with additional locking
yet.
There are several places where it's assumed a key can be written on one
line. One is in the format of the .git/annex/unused files. The difficult
one is that filenames derived from keys are fed into git cat-file --batch,
which has a line based input. (And no -z option.)
So, for now it's best to block such keys being created.
When storing content in bare repositories, use the hashDirLower
directories. Bare repositories can be on USB drives, which might
use the FAT filesystem, and fall afoul of recent bugs in linux's handling
of mixed case on FAT. Using hashDirLower avoids that.
The only fully supported thing is to have the main repository on one disk,
and .git/annex on another. Only commands that move data in/out of the annex
will need to copy it across devices.
There is only partial support for putting arbitrary subdirectories of
.git/annex on different devices. For one thing, but this can require more
copies to be done. For example, when .git/annex/tmp is on one device, and
.git/annex/journal on another, every journal write involves a call to
mv(1). Also, there are a few places that make hard links between various
subdirectories of .git/annex with createLink, that are not handled.
In the common case without cross-device, the new moveFile is actually
faster than renameFile, avoiding an unncessary stat to check that a file
(not a directory) is being moved. Of course if a cross-device move is
needed, it is as slow as mv(1) of the data.
It would be nice if command-specific options were supported. The first
difficulty is that which command is being called is not known until after
getopt; but that could be worked around by finding the first non-dashed
parameter. Storing the settings without putting them in the annex monad is
the next difficulty; it could perhaps be handled by making the seek stage
pass applicable settings into the start stage (and from there on to perform
as needed). But that still leaves a problem, what data type to use to
represent the options between getopt and seek?
This is actually tricky, 45bbf210a1 added
the escaping because it's needed for rsync that does go over ssh.
So I had to detect whether the remote's rsync url will use ssh or not,
and vary the escaping.
Avoids doing auto-merging in commands that don't need fully current
information from the git-annex branch. In particular, git annex add no
longer needs to auto-merge. Affected commands: Anything that doesn't
look up data from the branch, but does write a change to it.
It might seem counterintuitive that we can change a value without first
making sure we have the current value. This optimisation works because
these two sequences are equivilant:
1. pull from remote
2. union merge
3. read file from branch
4. modify file and write to branch
vs.
1. read file from branch
2. modify file and write to branch
3. pull from remote
4. union merge
After either sequence, the git-annex branch contains the same logical content
for the modified file. (Possibly with lines in a different order or
additional old lines of course).