Made several special remotes support locking content on them while
dropping, which allows dropping from another special remote when the
content will only remain on a special remote of these types.
In both cases, verify the content is present actively, because it's
certianly possible for things other than git-annex to have removed it.
Worth thinking about what to do if at some later point, git-lfs gains
support for dropping content, and a content locking operation.
That would probably need a transition; first would need to make lockContent
use the locking operation. Then, once enough time had passed that we can
assume any git-annex operating on the git-lfs remote had that change,
git-annex could finally allow dropping from git-lfs.
Or, it could be that git-lfs gains support for dropping content, but not
locking it. In that case, it seems this commit would need to be reverted,
and then wait long enough for that git-annex to be everywhere, and only
then can git-annex safely support dropping from git-lfs.
So, the assumption made in this commit could lead to bother later.. But I
think it's actually highly unlikely git-lfs does ever support dropping;
it's outside their centralized model. Probably. :) Worth keeping in mind as
the same assumption is made about other special remotes though.
This commit was sponsored by Ethan Aubin.
Otherwise use the vendored copy as before.
The library is in Debian testing but not stable. Once it reaches
stable, the vendored copy can be removed.
Did not add it to debian/control because IIRC that's used to build
git-annex on stable too, possibly. However, the Debian maintainer will
probably want to make the package depend on libghc-git-lfs-dev.
This commit was sponsored by Ilya Shlyakhter on Patreon.
Clean build under ghc 8.8.3, which seems to do better at finding cases
where two imports both provide the same symbol, and warns about one of
them.
This commit was sponsored by Ilya Shlyakhter on Patreon.
When storing content on remote fails, always display a reason why.
Since the Storer used by special remotes already did, this mostly affects
git remotes, but not entirely. For example, if git-lfs failed to connect to
the endpoint, it used to silently return False.
That had almost no benefit at all, and complicated things quite a lot.
What I proably wanted this to be was something like ResourceT, but it
was not. The few remotes that actually need some preparation done only
once and reused used a MVar and not Preparer.
git-lfs repos that encrypt the annexed content but not the git repo only
need --force passed to initremote, allow enableremote and autoenable of
such remotes without forcing again.
Needing --force again particularly made autoenable of such a repo not work.
And once such a repo has been set up, it seems a second --force when
enabling it elsewhere has little added value. It does tell the user about
the possibly insecure configuration, but if the git repo has already been
pushed to that remote in the clear, data has already been exposed. The goal
of that --force was not to prevent every situation where such an exposure
can happen -- anyone who sets up a public git repo and pushes to it will
expose things similarly and git-annex is not involved. Instead, the purpose
of the --force is to point out to the user that they're asking for a
configuration where encryption is inconsistently applied.
git-annex config: Only allow configs be set that are ones git-annex
actually supports reading from repo-global config, to avoid confused users
trying to set other configs with this.
Fix serious regression in gcrypt and encrypted git-lfs remotes.
Since version 7.20200202.7, git-annex incorrectly stored content
on those remotes without encrypting it.
Problem was, Remote.Git enumerates all git remotes, including git-lfs
and gcrypt. It then dispatches to those. So, Remote.List used the
RemoteConfigParser from Remote.Git, instead of from git-lfs or gcrypt,
and that parser does not know about encryption fields, so did not
include them in the ParsedRemoteConfig. (Also didn't include other
fields specific to those remotes, perhaps chunking etc also didn't
get through.)
To fix, had to move RemoteConfig parsing down into the generate methods
of each remote, rather than doing it in Remote.List.
And a consequence of that was that ParsedRemoteConfig had to change to
include the RemoteConfig that got parsed, so that testremote can
generate a new remote based on an existing remote.
(I would have rather fixed this just inside Remote.Git, but that was not
practical, at least not w/o re-doing work that Remote.List already did.
Big ugly mostly mechanical patch seemed preferable to making git-annex
slower.)
remoteAnnexConfig will avoid bugs like
a3a674d15b
Use now more generic remoteConfig in a couple places that built
non-annex config settings manually before.
using git credential to get the password
One thing this doesn't do is wrap the password prompting inside the prompt
action. So with -J, the output can be a bit garbled.
Special remote programs that use GETCONFIG/SETCONFIG are recommended
to implement it.
The description is not yet used, but will be useful later when adding a way
to make initremote list all accepted configs.
configParser now takes a RemoteConfig parameter. Normally, that's not
needed, because configParser returns a parter, it does not parse it
itself. But, it's needed to look at externaltype and work out what
external remote program to run for LISTCONFIGS.
Note that, while externalUUID is changed to a Maybe UUID, checkExportSupported
used to use NoUUID. The code that now checks for Nothing used to behave
in some undefined way if the external program made requests that
triggered it.
Also, note that in externalSetup, once it generates external,
it parses the RemoteConfig strictly. That generates a
ParsedRemoteConfig, which is thrown away. The reason it's ok to throw
that away, is that, if the strict parse succeeded, the result must be
the same as the earlier, lenient parse.
initremote of an external special remote now runs the program three
times. First for LISTCONFIGS, then EXPORTSUPPORTED, and again
LISTCONFIGS+INITREMOTE. It would not be hard to eliminate at least
one of those, and it should be possible to only run the program once.
Needed so Remote.External can query the external program for its
configs. When the external program does not support the query,
the passthrough option will make all input fields be available.
This is a first step toward that goal, using the ProposedAccepted type
in RemoteConfig lets initremote/enableremote reject bad parameters that
were passed in a remote's configuration, while avoiding enableremote
rejecting bad parameters that have already been stored in remote.log
This does not eliminate every place where a remote config is parsed and a
default value is used if the parse false. But, I did fix several
things that expected foo=yes/no and so confusingly accepted foo=true but
treated it like foo=no. There are still some fields that are parsed with
yesNo but not not checked when initializing a remote, and there are other
fields that are parsed in other ways and not checked when initializing a
remote.
This also lays groundwork for rejecting unknown/typoed config keys.
The parser and looking up config keys in the map should both be faster
due to using ByteString.
I had hoped this would speed up startup time, but any improvement to
that was too small to measure. Seems worth keeping though.
Note that the parser breaks up the ByteString, but a config map ends up
pointing to the config as read, which is retained in memory until every
value from it is no longer used. This can change memory usage
patterns marginally, but won't affect git-annex.
This will speed up the common case where a Key is deserialized from
disk, but is then serialized to build eg, the path to the annex object.
Previously attempted in 4536c93bb2
and reverted in 96aba8eff7.
The problems mentioned in the latter commit are addressed now:
Read/Show of KeyData is backwards-compatible with Read/Show of Key from before
this change, so Types.Distribution will keep working.
The Eq instance is fixed.
Also, Key has smart constructors, avoiding needing to remember to update
the cached serialization.
Used git-annex benchmark:
find is 7% faster
whereis is 3% faster
get when all files are already present is 5% faster
Generally, the benchmarks are running 0.1 seconds faster per 2000 files,
on a ram disk in my laptop.
* git-lfs: The url provided to initremote/enableremote will now be
stored in the git-annex branch, allowing enableremote to be used without
an url. initremote --sameas can be used to add additional urls.
* git-lfs: When there's a git remote with an url that's known to be
used for git-lfs, automatically enable the special remote.
This solves the problem of sameas remotes trampling over per-remote
state. Used for:
* per-remote state, of course
* per-remote metadata, also of course
* per-remote content identifiers, because two remote implementations
could in theory generate the same content identifier for two different
peices of content
While chunk logs are per-remote data, they don't use this, because the
number and size of chunks stored is a common property across sameas
remotes.
External special remote had a complication, where it was theoretically
possible for a remote to send SETSTATE or GETSTATE during INITREMOTE or
EXPORTSUPPORTED. Since the uuid of the remote is typically generate in
Remote.setup, it would only be possible to pass a Maybe
RemoteStateHandle into it, and it would otherwise have to construct its
own. Rather than go that route, I decided to send an ERROR in this case.
It seems unlikely that any existing external special remote will be
affected. They would have to make up a git-annex key, and set state for
some reason during INITREMOTE. I can imagine such a hack, but it doesn't
seem worth complicating the code in such an ugly way to support it.
Unfortunately, both TestRemote and Annex.Import needed the Remote
to have a new field added that holds its RemoteStateHandle.
This avoids some extra work, but I don't think it was possible for two ssh
endpoint discoveries run concurrently to both prompt for the ssh password;
Annex.Ssh itself deals with concurrency.
This is mostly groundwork for http password prompting.
Using Logs.RemoteState for this means that if the same key gets uploaded
twice to a git-lfs remote, but somehow has different content the two
times (eg it's an URL key with non-stable content), the sha256/size of
the newer content uploaded will overwrite what was remembered before. That
seems ok; it just means that git-annex will request the newer version of
the content when downloading from git-lfs.
It will remember the sha256 and size if both are not known, or if only
the sha256 is not known but the size is known, it only remembers the
sha256, to avoid wasting space on the size. I did not add special case
for when the sha256 is known and the size is not, because it's been a
long time since git-annex created SHA256 keys without a size.
(See doc/upgrades/SHA_size.mdwn)
The protocol design allows the server to respond with some other object;
if a server for some reason a server did that, it would not be right for
git-annex to download its content. I don't think it would be a security
hole, since git-annex is downloading a specific key and will verify the
key's content. Seems like a good idea to belt-and-suspenders test for
such a misuse of the protocol.
This is a special remote and a git remote at the same time; git can pull
and push to it and git-annex can use it as a special remote.
Remote.Git has to check if it's configured as a git-lfs special remote
and sets it up as one if so.
Object methods not implemented yet.