Avoid repeatedly opening keys db when accessing a local git remote and -J
is used.
What was happening was that Remote.Git.onLocal created a new annex state
as each thread started up. The way the MVar was used did not prevent that.
And that, in turn, led to repeated opening of the keys db, as well as
probably other extra work or resource use.
Also managed to get rid of Annex.remoteannexstate, and it turned out there
was an unncessary Maybe in the keysdbhandle, since the handle starts out
closed.
Remaining things needing converted are in the assistant, and Annex.Ssh.
Every other remaining call to createDirectoryIfMissing True has been
audited and is not relevant. The ones in Build/ of course don't get
included in the program. Others included eg, Remote.Tahoe and
Config.Files which both write to dotfiles under the home directory.
This is untested because of rain, also I am operating from truncated
copiler error messages in a bug report that also doesn't mention what the
library version is. Still, it should work.
May break builds with old ghc, in particular DerivingStrategies is
I think fairly new? The pragmas could be ifdefed if necessary. Works with
ghc 8.6.5.
This avoids hardcoding the sha size, so when git uses sha256, it will
output the full sha256 and not a truncation to 40 characters.
I reviewed git's history, and while there have been some
bugs with commands not supporting --no-abbrev (eg git diff --no-index
--no-abbrev was broken in git 2.1), none of the commands git-annex
uses will be impacted by those old bugs.
Git will eventually switch to sha2 and there will not be one single
shaSize anymore, but two (40 and 64).
Changed all parsers for git plumbing output to support both sizes of
shas.
One potential problem this does not deal with is, if somewhere in
git-annex it reads two shas from different sources, and compares them
to see if they're the same sha, it would fail if they're sha1 and sha256
of the same value. I don't know if that will really be a concern.
Remove dup definitions and just use the RawFilePath one. </> etc are
enough faster that it's probably faster than building a String directly,
although I have not benchmarked.
git-annex find is now RawFilePath end to end, no string conversions.
So is git-annex get when it does not need to get anything.
So this is a major milestone on optimisation.
Benchmarks indicate around 30% speedup in both commands.
Probably many other performance improvements. All or nearly all places
where a file is statted use RawFilePath now.
Adds a dependency on filepath-bytestring, an as yet unreleased fork of
filepath that operates on RawFilePath.
Git.Repo also changed to use RawFilePath for the path to the repo.
This does eliminate some RawFilePath -> FilePath -> RawFilePath
conversions. And filepath-bytestring's </> is probably faster.
But I don't expect a major performance improvement from this.
This is mostly groundwork for making Annex.Location use RawFilePath,
which will allow for a conversion-free pipleline.
Since the sqlite branch uses blobs extensively, there are some
performance benefits, ByteStrings now get stored and retrieved w/o
conversion in some cases like in Database.Export.
Finally builds (oh the agoncy of making it build), but still very
unmergable, only Command.Find is included and lots of stuff is badly
hacked to make it compile.
Benchmarking vs master, this git-annex find is significantly faster!
Specifically:
num files old new speedup
48500 4.77 3.73 28%
12500 1.36 1.02 66%
20 0.075 0.074 0% (so startup time is unchanged)
That's without really finishing the optimization. Things still to do:
* Eliminate all the fromRawFilePath, toRawFilePath, encodeBS,
decodeBS conversions.
* Use versions of IO actions like getFileStatus that take a RawFilePath.
* Eliminate some Data.ByteString.Lazy.toStrict, which is a slow copy.
* Use ByteString for parsing git config to speed up startup.
It's likely several of those will speed up git-annex find further.
And other commands will certianly benefit even more.
This will speed up the common case where a Key is deserialized from
disk, but is then serialized to build eg, the path to the annex object.
Previously attempted in 4536c93bb2
and reverted in 96aba8eff7.
The problems mentioned in the latter commit are addressed now:
Read/Show of KeyData is backwards-compatible with Read/Show of Key from before
this change, so Types.Distribution will keep working.
The Eq instance is fixed.
Also, Key has smart constructors, avoiding needing to remember to update
the cached serialization.
Used git-annex benchmark:
find is 7% faster
whereis is 3% faster
get when all files are already present is 5% faster
Generally, the benchmarks are running 0.1 seconds faster per 2000 files,
on a ram disk in my laptop.
addAssociatedFileNewBench would sometimes pick a random number that a
previous call had already added. Using a MVar, make it always advance,
so the same behavior is benchmarked each time.
* benchmark: Changed --databases to take a parameter specifiying the size
of the database to benchmark.
* benchmark --databases: Display size of the populated database.
* benchmark --databases: Improve the "addAssociatedFile to (new)"
benchmark to really add new values, not overwriting old values.
The old db is cleaned up when a new incremental fsck is started.
The incremental fsck won't pick up where the old one left off, but I
consider this a minor enough thing that it can just be documented and
won't be a problem.
The test suite found a bug; select_ can fail now because a uniqueness
constrain has been added.
Now the test suite passes.
Also, I'm satisfied the changed PersistField instances work.
Looking over what changed, and what I've already tested, Key, FilePath,
and InodeCache are known working; ContentIdentifier is trivial
ByteString to blob; and SSha is trivial String to varchar. Both are
tested by the test suite. I've also tested the new FileSize and
EpochTime instances already, and they work.
Bearing in mind that these indexes are really uniqueness constraints
that just happen to also make sqlite generate indexes.
In Database.ContentIndentifier, the ContentIndentifiersKeyRemoteCidIndex
is fine as a uniqueness constraint because it contains all rows from the
table. The ContentIndentifiersCidRemoteIndex is also ok because there
can only be one key for a given (cid, uuid) combination.
In Database.Export, the new ExportTreeFileKeyIndex is the same pair as
the old ExportTreeKeyFileIndex (previously ExportTreeIndex). And
in Database.Keys.SQL, the new InodeCacheKeyIndex is the same pair as the
old KeyInodeCacheIndex.
This is a non-backwards compatable change, so not suitable for merging
w/o a annex.version bump and transition code. Not yet tested.
This improves performance of git-annex benchmark --databases
across the board by 10-25%, since eg Key roundtrips as a ByteString.
(serializeKey' produces a lazy ByteString, so there is still a
copy involved in converting it to a strict ByteString. It may be faster
to switch to using bytestring-strict-builder.)
FilePath and Key are both stored as blobs. This avoids mojibake in some
situations. It would be possible to use varchar instead, if persistent
could avoid converting that to Text, but it seems there is no good
way to do so. See doc/todo/sqlite_database_improvements.mdwn
Eliminated some ugly artifacts of using Read/Show serialization;
constructors and quoted strings are no longer stored in sqlite.
Renamed SRef to SSha to reflect that it is only ever a git sha,
not a ref name. Since it is limited to the characters in a sha,
it is not affected by mojibake, so still uses String.
Rescued from commit 11d6e2e260 which removed
db benchmarks in favor of benchmarking arbitrary git-annex commands. Which
is nice and general, but microbenchmarks are useful too.
Rescued from commit 11d6e2e260 which removed
db benchmarks in favor of benchmarking arbitrary git-annex commands. Which
is nice and general, but microbenchmarks are useful too.
The only good thing about it is it does not require a major version bump
to improve the database. That will need to happen at some point though.
Potentially very very slow in a large repository.
Ugly use of raw sql.
This solves the problem of sameas remotes trampling over per-remote
state. Used for:
* per-remote state, of course
* per-remote metadata, also of course
* per-remote content identifiers, because two remote implementations
could in theory generate the same content identifier for two different
peices of content
While chunk logs are per-remote data, they don't use this, because the
number and size of chunks stored is a common property across sameas
remotes.
External special remote had a complication, where it was theoretically
possible for a remote to send SETSTATE or GETSTATE during INITREMOTE or
EXPORTSUPPORTED. Since the uuid of the remote is typically generate in
Remote.setup, it would only be possible to pass a Maybe
RemoteStateHandle into it, and it would otherwise have to construct its
own. Rather than go that route, I decided to send an ERROR in this case.
It seems unlikely that any existing external special remote will be
affected. They would have to make up a git-annex key, and set state for
some reason during INITREMOTE. I can imagine such a hack, but it doesn't
seem worth complicating the code in such an ugly way to support it.
Unfortunately, both TestRemote and Annex.Import needed the Remote
to have a new field added that holds its RemoteStateHandle.
fsck --incremental/--more: Fix bug that prevented the incremental fsck
information from being updated every 5 minutes as it was supposed to be; it
was only updated after 1000 files were checked, which may be more files
that are possible to fsck in a given fsck time window.
Thanks to Peter Simons for help with analysis of this bug.
Auditing for other cases of the same mistake, the keys db also had it
backwards. This seems unlikely to really have been a problem;
it would need associated files updates etc to be coming in slowly for some
reason and then be interrupted to cause any problem.
IIRC the design of the keys db assumes that any interruped
operation will be restarted, and so it can lose any buffered database
updates safely.
Had a report of close throwing ErrorBusy on CIFS.
Retrying up to 16 seconds is a balance between hopefully waiting long
enough for the problem to clear up and waiting so long that git-annex seems
to hang.
The new dependency is free; persistent depends on unliftio-core.
Drop support for building with ghc older than 8.4.4, and with older
versions of serveral haskell libraries than will be included in Debian 10.
The only remaining version ifdefs in the entire code base are now a couple
for aws!
This commit should only be merged after the Debian 10 release.
And perhaps it will need to wait longer than that; it would make
backporting new versions of git-annex to Debian 9 (stretch) which
has been actively happening as recently as this year.
This commit was sponsored by Ilya Shlyakhter.
Fix bug that caused importing from a special remote to repeatedly download
unchanged files when multiple files in the remote have the same content.
Unfortunately, there's really no good way to remove a uniqueness constraint
from a sqlite database. The best that can be done is to make a new table
and copy the data over. But that would require using persistent's
migrations or raw sql, and I don't want to do either.
Instead, a sledgehammer approach: Renamed .git/annex/cid to
.git/annex/cids. When the new database doesn't exist, it will be populated
from the git-annex branch.
Noting deletes the old database. Don't want to delete it out from under
some long-running git-annex process that might be using it. It could
eventually be deleted. But this is such a new feature, probably few repos
have the database in any case.
This does not change the overall license of the git-annex program, which
was already AGPL due to a number of sources files being AGPL already.
Legally speaking, I'm adding a new license under which these files are
now available; I already released their current contents under the GPL
license. Now they're dual licensed GPL and AGPL. However, I intend
for all my future changes to these files to only be released under the
AGPL license, and I won't be tracking the dual licensing status, so I'm
simply changing the license statement to say it's AGPL.
(In some cases, others wrote parts of the code of a file and released it
under the GPL; but in all cases I have contributed a significant portion
of the code in each file and it's that code that is getting the AGPL
license; the GPL license of other contributors allows combining with
AGPL code.)