This is a work in progress. It compiles and is able to do basic command
dispatch, including git autocorrection, while using optparse-applicative
for the core commandline parsing.
* Many commands are temporarily disabled before conversion.
* Options are not wired in yet.
* cmdnorepo actions don't work yet.
Also, removed the [Command] list, which was only used in one place.
This works, and seems fairly robust. Clean get of 20 files at -J3. At -J10,
there are some messages about ssh multiplexing, probably due to a race
spinning up the ssh connection cacher. But, it manages to get all the files
ok regardless.
The progress bars are a scrambled mess though, due to bugs in
ascii-progress, which I've already filed. Particularly this one:
https://github.com/yamadapc/haskell-ascii-progress/issues/8
Only fsck and reinject and the test suite used the Backend, and they can
look it up as needed from the Key. This simplifies the code and also speeds
it up.
There is a small behavior change here. Before, all commands would warn when
acting on an annexed file with an unknown backend. Now, only fsck and
reinject show that warning.
I've been disliking how the command seek actions were written for some
time, with their inversion of control and ugly workarounds.
The last straw to fix it was sync --content, which didn't fit the
Annex [CommandStart] interface well at all. I have not yet made it take
advantage of the changed interface though.
The crucial change, and probably why I didn't do it this way from the
beginning, is to make each CommandStart action be run with exceptions
caught, and if it fails, increment a failure counter in annex state.
So I finally remove the very first code I wrote for git-annex, which
was before I had exception handling in the Annex monad, and so ran outside
that monad, passing state explicitly as it ran each CommandStart action.
This was a real slog from 1 to 5 am.
Test suite passes.
Memory usage is lower than before, sometimes by a couple of megabytes, and
remains constant, even when running in a large repo, and even when
repeatedly failing and incrementing the error counter. So no accidental
laziness space leaks.
Wall clock speed is identical, even in large repos.
This commit was sponsored by an anonymous bitcoiner.
This is a simple approach for setting up a mirroring repository.
It will work with any type of remotes.
Mirror --from is more expensive than mirror --to in general.
OTOH, mirror --from will get the file from any remote that has it, not only
the named mirror remote. And if the named mirror remote is not the fastest
available remote with a file, that can speed things up.
It would be possible to make the assistant or watch command do a more
dynamic mirroring, that didn't need to scan every time.