The subtle part of this is what happens when the remote fails to remove
an empty directory. The removal from the export needs to fail in that
case, so the removal will be tried again later. However, removeExportLocation
has already been run and changed the export db, so if the next run
checks getExportLocation, it might decide nothing remains to be done,
leaving the empty directory.
Dealt with that by making removeEmptyDirectories, handle a failure
by calling addExportLocation, reverting the database changes so the next
run will be guaranteed to try deleting the empty directory again.
This commit was sponsored by Thomas Hochstein on Patreon.
Not yet called by Command.Export.
WebDAV needs this to clean up empty collections. Also, example.sh turned
out to not be cleaning up directories when removing content
from them, so it made sense for it to use this.
Remote.Directory did not need it, and since its cleanup method for empty
directories is more efficient than what Command.Export will need to do
to find empty directories, it uses Nothing so that extra work can be
avoided.
This commit was sponsored by Thom May on Patreon.
Don't allow "exporttree=yes" to be set when the special remote
does not support exports. That would be confusing since the user would
set up a special remote for exports, but `git annex export` to it would
later fail.
This commit was supported by the NSF-funded DataLad project.
This is seriously super hairy. It has to handle interrupted exports,
which may be resumed with the same or a different tree. It also has to
recover from export conflicts, which could cause the wrong content
to be renamed to a file.
I think this works, or is close to working. See the update to the design
for how it works.
This is definitely not optimal, in that it does more renames than are
necessary. It would probably be worth finding the keys that are really
renamed and only renaming those. But let's get the "simple" approach to
work first..
This commit was supported by the NSF-funded DataLad project.
Straightforward enough, except for the needed belt-and-suspenders sanity
checks to avoid foot shooting due to exports not being key/value stores.
* Even when annex.verify=false, always verify from exports.
* Only get files from exports that use a backend that supports
checksum verification.
* Never trust exports, even if the user says to, because then
`git annex drop` would drop content if the export seemed to contain
a copy.
This commit was supported by the NSF-funded DataLad project.
Removed uncorrect UniqueKey key in db schema; a key can appear multiple
times with different files.
The database has to be flushed after each removal. But when adding files
to the export, lots of changes are able to be queued up w/o flushing.
So it's still fairly efficient.
If large removals of files from exports are too slow, an alternative
would be to make two passes over the diff, one pass queueing deletions
from the database, then a flush and the a second pass updating the
location log. But that would use more memory, and need to look up
exportKey twice per removed file, so I've avoided such optimisation yet.
This commit was supported by the NSF-funded DataLad project.
* Only export to remotes that were initialized to support it.
* Prevent storing key/value on export remotes.
* Prevent enabling exporttree=yes and encryption in the same remote.
SetupStage Enable was changed to take the old RemoteConfig.
This allowed only setting exporttree when initially setting up a
remote, and not configuring it later after stuff might already be stored
in the remote.
Went with =yes rather than =true for consistency with other parts of
git-annex. Changed docs accordingly.
This commit was supported by the NSF-funded DataLad project.
This will allow disabling exports for remotes that are not configured to
allow them. Also, exportSupported will be useful for the external
special remote to probe.
This commit was supported by the NSF-funded DataLad project
This avoids needing to deal with the complexity of partially transferred
files in the export. We'd not be able to resume uploading to such a file
anyway, so just avoid them.
The implementation in Remote.Directory is not completely ideal, because
it could leave the temp file hanging around in the export directory.
This only happens if it's killed with -9, or there's a power failure;
normally viaTmp cleans up after itself, even when interrupted. I could
not see a better way to do it though, since the export directory might
be the root of a filesystem.
Also some design thoughts on resuming, which depend on storeExport being
atomic.
This commit was sponsored by Fernando Jimenez on Partreon.
Rather than providing the key to export, provide the file.
When exporting a treeish that contains files that are not annexed,
this will let the content of those files also be exported.
There's still a Key in the interface; it will be used by the external
special remote protocol. A SHA1 key can be used when exporting
non-annexed files.
This commit was sponsored by Brock Spratlen on Patreon.
Implemented so far for the directory special remote.
Several remotes don't make sense to export to. Regular Git remotes,
obviously, do not. Bup remotes almost certianly do not, since bup would
need to be used to extract the export; same store for Ddar. Web and
Bittorrent are download-only. GCrypt is always encrypted so exporting to
it would be pointless. There's probably no point complicating the Hook
remotes with exporting at this point. External, S3, Glacier, WebDAV,
Rsync, and possibly Tahoe should be modified to support export.
Thought about trying to reuse the storeKey/retrieveKeyFile/removeKey
interface, rather than adding a new interface. But, it seemed better to
keep it separate, to avoid a complicated interface that sometimes
encrypts/chunks key/value storage and sometimes users non-key/value
storage. Any common parts can be factored out.
Note that storeExport is not atomic.
doc/design/exporting_trees_to_special_remotes.mdwn has some things in
the "resuming exports" section that bear on this decision. Basically,
I don't think, at this time, that an atomic storeExport would help with
resuming, because exports are not key/value storage, and we can't be
sure that a partially uploaded file is the same content we're currently
trying to export.
Also, note that ExportLocation will always use unix path separators.
This is important, because users may export from a mix of windows and
unix, and it avoids complicating the API with path conversions,
and ensures that in such a mix, they always use the same locations for
exports.
This commit was sponsored by Bruno BEAUFILS on Patreon.
Most remotes have an idempotent setup that can be reused for
enableremote, but in a few cases, it needs to tell which, and whether
a UUID was provided to setup was used.
This is groundwork for making initremote be able to provide a UUID.
It should not change any behavior.
Note that it would be nice to make the UUID always be provided to setup,
and make setup not need to generate and return a UUID. What prevented
this simplification is Remote.Git.gitSetup, which needs to reuse the
UUID of the git remote when setting it up, and so has to return that
UUID.
This commit was sponsored by Thom May on Patreon.
Removed the instance LensGpgEncParams RemoteConfig because it encouraged
code that does not take the RemoteGitConfig into account.
RemoteType's setup was changed to take a RemoteGitConfig,
although the only place that is able to provide a non-empty one is
enableremote, when it's changing an existing remote. This led to several
folow-on changes, and got RemoteGitConfig plumbed through.
In c6632ee5c8, it actually only handled
uploading objects to a shared repository. To avoid verification when
downloading objects from a shared repository, was a lot harder.
On the plus side, if the process of downloading a file from a remote
is able to verify its content on the side, the remote can indicate this
now, and avoid the extra post-download verification.
As of yet, I don't have any remotes (except Git) using this ability.
Some more work would be needed to support it in special remotes.
It would make sense for tahoe to implicitly verify things downloaded from it;
as long as you trust your tahoe server (which typically runs locally),
there's cryptographic integrity. OTOH, despite bup being based on shas,
a bup repo under an attacker's control could have the git ref used for an
object changed, and so a bup repo shouldn't implicitly verify. Indeed,
tahoe seems unique in being trustworthy enough to implicitly verify.
Now it suffices to run git remote add, followed by git-annex sync. Now the
remote is automatically initialized for use by git-annex, where before the
git-annex branch had to manually be pushed before using git-annex sync.
Note that this involved changes to git-annex-shell, so if the remote is
using an old version, the manual push is still needed.
Implementation required git-annex-shell be changed, so configlist can
autoinit a repository even when no git-annex branch has been pushed yet.
Unfortunate because we'll have to wait for it to get deployed to servers
before being able to rely on this change in the documentation.
Did consider making git-annex sync push the git-annex branch to repos that
didn't have a uuid, but this seemed difficult to do without complicating it
in messy ways.
It would be cleaner to split a command out from configlist to handle
the initialization. But this is difficult without sacrificing backwards
compatability, for users of old git-annex versions which would not use the
new command.
Now `git annex info $remote` shows info specific to the type of the remote,
for example, it shows the rsync url.
Remote types that support encryption or chunking also include that in their
info.
This commit was sponsored by Ævar Arnfjörð Bjarmason.
Added a mkUnavailable method, which a Remote can use to generate a version
of itself that is not available. Implemented for several, but not yet all
remotes.
This allows testing that checkPresent properly throws an exceptions when
it cannot check if a key is present or not. It also allows testing that the
other methods don't throw exceptions in these circumstances.
This immediately found several bugs, which this commit also fixes!
* git remotes using ssh accidentially had checkPresent return
an exception, rather than throwing it
* The chunking code accidentially returned False rather than
propigating an exception when there were no chunks and
checkPresent threw an exception for the non-chunked key.
This commit was sponsored by Carlo Matteo Capocasa.
I tend to prefer moving toward explicit exception handling, not away from
it, but in this case, I think there are good reasons to let checkPresent
throw exceptions:
1. They can all be caught in one place (Remote.hasKey), and we know
every possible exception is caught there now, which we didn't before.
2. It simplified the code of the Remotes. I think it makes sense for
Remotes to be able to be implemented without needing to worry about
catching exceptions inside them. (Mostly.)
3. Types.StoreRetrieve.Preparer can only work on things that return a
Bool, which all the other relevant remote methods already did.
I do not see a good way to generalize that type; my previous attempts
failed miserably.
Leverage the new chunked remotes to automatically resume uploads.
Sort of like rsync, although of course not as efficient since this
needs to start at a chunk boundry.
But, unlike rsync, this method will work for S3, WebDAV, external
special remotes, etc, etc. Only directory special remotes so far,
but many more soon!
This implementation will also allow starting an upload from one repository,
interrupting it, and then resuming the upload to the same remote from
an entirely different repository.
Note that I added a comment that storeKey should atomically move the content
into place once it's all received. This was already an undocumented
requirement -- it's necessary for hasKey to work reliably. This resume code
just uses hasKey to find the first chunk that's missing.
Note that if there are two uploads of the same key to the same chunked remote,
one might resume at the point the other had gotten to, but both will then
redundantly upload. As before.
In the non-resume case, this adds one hasKey call per storeKey, and only
if the remote is configured to use chunks. Future work: Try to eliminate that
hasKey. Notice that eg, `git annex copy --to` checks if the key is present
before sending it, so is already running hasKey.. which could perhaps
be cached and reused.
However, this additional overhead is not very large compared with
transferring an entire large file, and the ability to resume
is certianly worth it. There is an optimisation in place for small files,
that avoids trying to resume if the whole file fits within one chunk.
This commit was sponsored by Georg Bauer.
Complicated by such repositories potentially being repos that should have
an annex.uuid, but it failed to be gotten, perhaps due to the past ssh repo
setup bugs. This is handled now by an Upgrade Repository button.
Currently only implemented for local git remotes. May try to add support
to git-annex-shell for ssh remotes later. Could concevably also be
supported by some special remote, although that seems unlikely.
Cronner user this when available, and when not falls back to
fsck --fast --from remote
git annex fsck --from does not itself use this interface.
To do so, I would need to pass --fast and all other options that influence
fsck on to the git annex fsck that it runs inside the remote. And that
seems like a lot of work for a result that would be no better than
cd remote; git annex fsck
This may need to be revisited if git-annex-shell gets support, since it
may be the case that the user cannot ssh to the server to run git-annex
fsck there, but can run git-annex-shell there.
This commit was sponsored by Damien Diederen.
To support this, a core.gcrypt-id is stored by git-annex inside the git
config of a local gcrypt repository, when setting it up.
That is compared with the remote's cached gcrypt-id. When different, a
drive has been changed. git-annex then looks up the remote config for
the uuid mapped from the core.gcrypt-id, and tweaks the configuration
appropriately. When there is no known config for the uuid, it will refuse to
use the remote.
This is a git-remote-gcrypt encrypted special remote. Only sending files
in to the remote works, and only for local repositories.
Most of the work so far has involved making initremote work. A particular
problem is that remote setup in this case needs to generate its own uuid,
derivied from the gcrypt-id. That required some larger changes in the code
to support.
For ssh remotes, this will probably just reuse Remote.Rsync's code, so
should be easy enough. And for downloading from a web remote, I will need
to factor out the part of Remote.Git that does that.
One particular thing that will need work is supporting hot-swapping a local
gcrypt remote. I think it needs to store the gcrypt-id in the git config of the
local remote, so that it can check it every time, and compare with the
cached annex-uuid for the remote. If there is a mismatch, it can change
both the cached annex-uuid and the gcrypt-id. That should work, and I laid
some groundwork for it by already reading the remote's config when it's
local. (Also needed for other reasons.)
This commit was sponsored by Daniel Callahan.
Most remotes have meters in their implementations of retrieveKeyFile
already. Simply hooking these up to the transfer log makes that information
available. Easy peasy.
This is particularly valuable information for encrypted remotes, which
otherwise bypass the assistant's polling of temp files, and so don't have
good progress bars yet.
Still some work to do here (see progressbars.mdwn changes), but this
is entirely an improvement from the lack of progress bars for encrypted
downloads.
There was confusion in different parts of the progress bar code about
whether an update contained the total number of bytes transferred, or the
number of bytes transferred since the last update. One way this bug
showed up was progress bars that seemed to stick at zero for a long time.
In order to fix it comprehensively, I add a new BytesProcessed data type,
that is explicitly a total quantity of bytes, not a delta.
Note that this doesn't necessarily fix every problem with progress bars.
Particularly, buffering can now cause progress bars to seem to run ahead
of transfers, reaching 100% when data is still being uploaded.