Removed dependency on MissingH, instead depending on the split
library.
After laying groundwork for this since 2015, it
was mostly straightforward. Added Utility.Tuple and
Utility.Split. Eyeballed System.Path.WildMatch while implementing
the same thing.
Since MissingH's progress meter display was being used, I re-implemented
my own. Bonus: Now progress is displayed for transfers of files of
unknown size.
This commit was sponsored by Shane-o on Patreon.
Restarting a crashing git process could result in filename encoding issues
when not in a unicode locale, as the restarted processes's handles were not
read in raw mode.
Since rawMode is always used when starting a coprocess, didn't bother
to parameterise it and just always enable it for simplicity.
This commit was sponsored by Jake Vosloo on Patreon.
.. and have to be checked to see if they are a pointed to an annexed file.
Cases where such memory use could occur included, but were not limited to:
- git commit -a of a large unlocked file (in v5 mode)
- git-annex adjust when a large file was checked into git directly
Generally, any use of catKey was a potential problem.
Fix by using git cat-file --batch-check to check size before catting.
This adds another git batch process, which is included in the CatFileHandle
for simplicity.
There could be performance impact, anywhere catKey is used. Particularly
likely to affect adjusted branch generation speed, and operations on
unlocked files in v6 mode. Hopefully since the --batch-check and
--batch read the same data, disk buffering will avoid most overhead.
Leaving only the overhead of talking to the process over the pipe and
whatever computation --batch-check needs to do.
This commit was sponsored by Bruno BEAUFILS on Patreon.
This fixes all instances of " \t" in the code base. Most common case
seems to be after a "where" line; probably vim copied the two space layout
of that line.
Done as a background task while listening to episode 2 of the Type Theory
podcast.
Removed instance, got it all to build using fromRef. (With a few things
that really need to show something using a ref for debugging stubbed out.)
Then added back Read instance, and made Logs.View use it for serialization.
This changes the view log format.
This is a massive win on OSX, which doesn't have a sha256sum normally.
Only use external hash commands when the file is > 1 mb,
since cryptohash is quite close to them in speed.
SHA is still used to calculate HMACs. I don't quite understand
cryptohash's API for those.
Used the following benchmark to arrive at the 1 mb number.
1 mb file:
benchmarking sha256/internal
mean: 13.86696 ms, lb 13.83010 ms, ub 13.93453 ms, ci 0.950
std dev: 249.3235 us, lb 162.0448 us, ub 458.1744 us, ci 0.950
found 5 outliers among 100 samples (5.0%)
4 (4.0%) high mild
1 (1.0%) high severe
variance introduced by outliers: 10.415%
variance is moderately inflated by outliers
benchmarking sha256/external
mean: 14.20670 ms, lb 14.17237 ms, ub 14.27004 ms, ci 0.950
std dev: 230.5448 us, lb 150.7310 us, ub 427.6068 us, ci 0.950
found 3 outliers among 100 samples (3.0%)
2 (2.0%) high mild
1 (1.0%) high severe
2 mb file:
benchmarking sha256/internal
mean: 26.44270 ms, lb 26.23701 ms, ub 26.63414 ms, ci 0.950
std dev: 1.012303 ms, lb 925.8921 us, ub 1.122267 ms, ci 0.950
variance introduced by outliers: 35.540%
variance is moderately inflated by outliers
benchmarking sha256/external
mean: 26.84521 ms, lb 26.77644 ms, ub 26.91433 ms, ci 0.950
std dev: 347.7867 us, lb 210.6283 us, ub 571.3351 us, ci 0.950
found 6 outliers among 100 samples (6.0%)
import Crypto.Hash
import Data.ByteString.Lazy as L
import Criterion.Main
import Common
testfile :: FilePath
testfile = "/run/shm/data" -- on ram disk
main = defaultMain
[ bgroup "sha256"
[ bench "internal" $ whnfIO internal
, bench "external" $ whnfIO external
]
]
sha256 :: L.ByteString -> Digest SHA256
sha256 = hashlazy
internal :: IO String
internal = show . sha256 <$> L.readFile testfile
external :: IO String
external = do
s <- readProcess "sha256sum" [testfile]
return $ fst $ separate (== ' ') s
Done using a mode witness, which ensures it's fixed everywhere.
Fixing catFileKey was a bear, because git cat-file does not provide a
nice way to query for the mode of a file and there is no other efficient
way to do it. Oh, for libgit2..
Note that I am looking at tree objects from HEAD, rather than the index.
Because I cat-file cannot show a tree object for the index.
So this fix is technically incomplete. The only cases where it matters
are:
1. A new large file has been directly staged in git, but not committed.
2. A file that was committed to HEAD as a symlink has been staged
directly in the index.
This could be fixed a lot better using libgit2.
This runs git-cat-file in non-batch mode for all files with spaces.
If a directory tree has a lot of them, and is in direct mode, even "git
annex add" when there are few new files will need a *lot* of forks!
The only reason buffering the whole file content to get the sha is not a
memory leak is that git-annex only ever uses this on symlinks.
This needs to be reverted as soon as a fix is available in git!
Fuzz tests have shown that git cat-file --batch sometimes stops running.
It's not yet known why (no error message; repo seems ok). But this is
something we can deal with in the CoProcess framework, since all 3 types of
long-running git processes should be restartable if they fail.
Note that, as implemented, only IO errors are caught. So an error thrown
by the reveiver, when it sees something that is not valid output from
git cat-file (etc) will not cause a restart. I don't want it to retry
if git commands change their output or are just outputting garbage.
This does mean that if the command did a partial output and crashed in the
middle, it would still not be restarted.
There is currently no guard against restarting a command repeatedly, if,
for example, it crashes repeatedly on startup.
The filename sent to git cat-file needs to be sent on a File encoded handle.
Also set the read handle to use the File encoding, so that any error
message mentioning the filename is received properly.
The actual file content is read using Data.ByteString.Char8, which
will ignore the read handle's encoding, so this won't change that.
(Whether that is entirely correct remains to be seen.)
I had not realized what a memory leak the lazy state monad could be,
although I have not seen much evidence of actual leaking in git-annex.
However, if running git-annex on a great many files, this could matter.
The additional Utility.State.changeState adds even more strictness,
avoiding a problem I saw in github-backup where repeatedly modifying
state built up a huge pile of thunks.
In git, a Ref can be a Sha, or a Branch, or a Tag. I added type aliases for
those. Note that this does not prevent mixing up of eg, refs and branches
at the type level. Since git really doesn't care, except rare cases like
git update-ref, or git tag -d, that seems ok for now.
There's also a tree-ish, but let's just use Ref for it. A given Sha or Ref
may or may not be a tree-ish, depending on the object type, so there seems
no point in trying to represent it at the type level.
Many functions took the repo as their first parameter. Changing it
consistently to be the last parameter allows doing some useful things with
currying, that reduce boilerplate.
In particular, g <- gitRepo is almost never needed now, instead
use inRepo to run an IO action in the repo, and fromRepo to get
a value from the repo.
This also provides more opportunities to use monadic and applicative
combinators.