electron/docs/tutorial/automated-testing.md
David Sanders 905aad9cb6
chore: type check JS in docs (#38423)
* build(deps): update @electron/lint-roller

* chore: type check JS in docs

* docs: add @ts-check and @ts-expect-error to code blocks

* chore: fix type check errors in docs

* chore: add ts-type to blocks
2023-06-05 16:26:26 +09:00

409 lines
13 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Automated Testing
Test automation is an efficient way of validating that your application code works as intended.
While Electron doesn't actively maintain its own testing solution, this guide will go over a couple
ways you can run end-to-end automated tests on your Electron app.
## Using the WebDriver interface
From [ChromeDriver - WebDriver for Chrome][chrome-driver]:
> WebDriver is an open source tool for automated testing of web apps across many
> browsers. It provides capabilities for navigating to web pages, user input,
> JavaScript execution, and more. ChromeDriver is a standalone server which
> implements WebDriver's wire protocol for Chromium. It is being developed by
> members of the Chromium and WebDriver teams.
There are a few ways that you can set up testing using WebDriver.
### With WebdriverIO
[WebdriverIO](https://webdriver.io/) (WDIO) is a test automation framework that provides a
Node.js package for testing with WebDriver. Its ecosystem also includes various plugins
(e.g. reporter and services) that can help you put together your test setup.
#### Install the test runner
First you need to run the WebdriverIO starter toolkit in your project root directory:
```sh npm2yarn
npx wdio . --yes
```
This installs all necessary packages for you and generates a `wdio.conf.js` configuration file.
#### Connect WDIO to your Electron app
Update the capabilities in your configuration file to point to your Electron app binary:
```javascript title='wdio.conf.js'
exports.config = {
// ...
capabilities: [{
browserName: 'chrome',
'goog:chromeOptions': {
binary: '/path/to/your/electron/binary', // Path to your Electron binary.
args: [/* cli arguments */] // Optional, perhaps 'app=' + /path/to/your/app/
}
}]
// ...
}
```
#### Run your tests
To run your tests:
```sh
$ npx wdio run wdio.conf.js
```
### With Selenium
[Selenium](https://www.selenium.dev/) is a web automation framework that
exposes bindings to WebDriver APIs in many languages. Their Node.js bindings
are available under the `selenium-webdriver` package on NPM.
#### Run a ChromeDriver server
In order to use Selenium with Electron, you need to download the `electron-chromedriver`
binary, and run it:
```sh npm2yarn
npm install --save-dev electron-chromedriver
./node_modules/.bin/chromedriver
Starting ChromeDriver (v2.10.291558) on port 9515
Only local connections are allowed.
```
Remember the port number `9515`, which will be used later.
#### Connect Selenium to ChromeDriver
Next, install Selenium into your project:
```sh npm2yarn
npm install --save-dev selenium-webdriver
```
Usage of `selenium-webdriver` with Electron is the same as with
normal websites, except that you have to manually specify how to connect
ChromeDriver and where to find the binary of your Electron app:
```js title='test.js' @ts-expect-error=[1]
const webdriver = require('selenium-webdriver')
const driver = new webdriver.Builder()
// The "9515" is the port opened by ChromeDriver.
.usingServer('http://localhost:9515')
.withCapabilities({
'goog:chromeOptions': {
// Here is the path to your Electron binary.
binary: '/Path-to-Your-App.app/Contents/MacOS/Electron'
}
})
.forBrowser('chrome') // note: use .forBrowser('electron') for selenium-webdriver <= 3.6.0
.build()
driver.get('http://www.google.com')
driver.findElement(webdriver.By.name('q')).sendKeys('webdriver')
driver.findElement(webdriver.By.name('btnG')).click()
driver.wait(() => {
return driver.getTitle().then((title) => {
return title === 'webdriver - Google Search'
})
}, 1000)
driver.quit()
```
## Using Playwright
[Microsoft Playwright](https://playwright.dev) is an end-to-end testing framework built
using browser-specific remote debugging protocols, similar to the [Puppeteer][] headless
Node.js API but geared towards end-to-end testing. Playwright has experimental Electron
support via Electron's support for the [Chrome DevTools Protocol][] (CDP).
### Install dependencies
You can install Playwright through your preferred Node.js package manager. The Playwright team
recommends using the `PLAYWRIGHT_SKIP_BROWSER_DOWNLOAD` environment variable to avoid
unnecessary browser downloads when testing an Electron app.
```sh npm2yarn
PLAYWRIGHT_SKIP_BROWSER_DOWNLOAD=1 npm install --save-dev playwright
```
Playwright also comes with its own test runner, Playwright Test, which is built for end-to-end
testing. You can also install it as a dev dependency in your project:
```sh npm2yarn
npm install --save-dev @playwright/test
```
:::caution Dependencies
This tutorial was written `playwright@1.16.3` and `@playwright/test@1.16.3`. Check out
[Playwright's releases][playwright-releases] page to learn about
changes that might affect the code below.
:::
:::info Using third-party test runners
If you're interested in using an alternative test runner (e.g. Jest or Mocha), check out
Playwright's [Third-Party Test Runner][playwright-test-runners] guide.
:::
### Write your tests
Playwright launches your app in development mode through the `_electron.launch` API.
To point this API to your Electron app, you can pass the path to your main process
entry point (here, it is `main.js`).
```js {5} @ts-nocheck
const { _electron: electron } = require('playwright')
const { test } = require('@playwright/test')
test('launch app', async () => {
const electronApp = await electron.launch({ args: ['main.js'] })
// close app
await electronApp.close()
})
```
After that, you will access to an instance of Playwright's `ElectronApp` class. This
is a powerful class that has access to main process modules for example:
```js {6-11} @ts-nocheck
const { _electron: electron } = require('playwright')
const { test } = require('@playwright/test')
test('get isPackaged', async () => {
const electronApp = await electron.launch({ args: ['main.js'] })
const isPackaged = await electronApp.evaluate(async ({ app }) => {
// This runs in Electron's main process, parameter here is always
// the result of the require('electron') in the main app script.
return app.isPackaged
})
console.log(isPackaged) // false (because we're in development mode)
// close app
await electronApp.close()
})
```
It can also create individual [Page][playwright-page] objects from Electron BrowserWindow instances.
For example, to grab the first BrowserWindow and save a screenshot:
```js {6-7} @ts-nocheck
const { _electron: electron } = require('playwright')
const { test } = require('@playwright/test')
test('save screenshot', async () => {
const electronApp = await electron.launch({ args: ['main.js'] })
const window = await electronApp.firstWindow()
await window.screenshot({ path: 'intro.png' })
// close app
await electronApp.close()
})
```
Putting all this together using the PlayWright Test runner, let's create a `example.spec.js`
test file with a single test and assertion:
```js title='example.spec.js' @ts-nocheck
const { _electron: electron } = require('playwright')
const { test, expect } = require('@playwright/test')
test('example test', async () => {
const electronApp = await electron.launch({ args: ['.'] })
const isPackaged = await electronApp.evaluate(async ({ app }) => {
// This runs in Electron's main process, parameter here is always
// the result of the require('electron') in the main app script.
return app.isPackaged
})
expect(isPackaged).toBe(false)
// Wait for the first BrowserWindow to open
// and return its Page object
const window = await electronApp.firstWindow()
await window.screenshot({ path: 'intro.png' })
// close app
await electronApp.close()
})
```
Then, run Playwright Test using `npx playwright test`. You should see the test pass in your
console, and have an `intro.png` screenshot on your filesystem.
```console
☁ $ npx playwright test
Running 1 test using 1 worker
✓ example.spec.js:4:1 example test (1s)
```
:::info
Playwright Test will automatically run any files matching the `.*(test|spec)\.(js|ts|mjs)` regex.
You can customize this match in the [Playwright Test configuration options][playwright-test-config].
:::
:::tip Further reading
Check out Playwright's documentation for the full [Electron][playwright-electron]
and [ElectronApplication][playwright-electronapplication] class APIs.
:::
## Using a custom test driver
It's also possible to write your own custom driver using Node.js' built-in IPC-over-STDIO.
Custom test drivers require you to write additional app code, but have lower overhead and let you
expose custom methods to your test suite.
To create a custom driver, we'll use Node.js' [`child_process`](https://nodejs.org/api/child_process.html) API.
The test suite will spawn the Electron process, then establish a simple messaging protocol:
```js title='testDriver.js' @ts-nocheck
const childProcess = require('child_process')
const electronPath = require('electron')
// spawn the process
const env = { /* ... */ }
const stdio = ['inherit', 'inherit', 'inherit', 'ipc']
const appProcess = childProcess.spawn(electronPath, ['./app'], { stdio, env })
// listen for IPC messages from the app
appProcess.on('message', (msg) => {
// ...
})
// send an IPC message to the app
appProcess.send({ my: 'message' })
```
From within the Electron app, you can listen for messages and send replies using the Node.js
[`process`](https://nodejs.org/api/process.html) API:
```js title='main.js'
// listen for messages from the test suite
process.on('message', (msg) => {
// ...
})
// send a message to the test suite
process.send({ my: 'message' })
```
We can now communicate from the test suite to the Electron app using the `appProcess` object.
For convenience, you may want to wrap `appProcess` in a driver object that provides more
high-level functions. Here is an example of how you can do this. Let's start by creating
a `TestDriver` class:
```js title='testDriver.js' @ts-nocheck
class TestDriver {
constructor ({ path, args, env }) {
this.rpcCalls = []
// start child process
env.APP_TEST_DRIVER = 1 // let the app know it should listen for messages
this.process = childProcess.spawn(path, args, { stdio: ['inherit', 'inherit', 'inherit', 'ipc'], env })
// handle rpc responses
this.process.on('message', (message) => {
// pop the handler
const rpcCall = this.rpcCalls[message.msgId]
if (!rpcCall) return
this.rpcCalls[message.msgId] = null
// reject/resolve
if (message.reject) rpcCall.reject(message.reject)
else rpcCall.resolve(message.resolve)
})
// wait for ready
this.isReady = this.rpc('isReady').catch((err) => {
console.error('Application failed to start', err)
this.stop()
process.exit(1)
})
}
// simple RPC call
// to use: driver.rpc('method', 1, 2, 3).then(...)
async rpc (cmd, ...args) {
// send rpc request
const msgId = this.rpcCalls.length
this.process.send({ msgId, cmd, args })
return new Promise((resolve, reject) => this.rpcCalls.push({ resolve, reject }))
}
stop () {
this.process.kill()
}
}
module.exports = { TestDriver }
```
In your app code, can then write a simple handler to receive RPC calls:
```js title='main.js'
const METHODS = {
isReady () {
// do any setup needed
return true
}
// define your RPC-able methods here
}
const onMessage = async ({ msgId, cmd, args }) => {
let method = METHODS[cmd]
if (!method) method = () => new Error('Invalid method: ' + cmd)
try {
const resolve = await method(...args)
process.send({ msgId, resolve })
} catch (err) {
const reject = {
message: err.message,
stack: err.stack,
name: err.name
}
process.send({ msgId, reject })
}
}
if (process.env.APP_TEST_DRIVER) {
process.on('message', onMessage)
}
```
Then, in your test suite, you can use your `TestDriver` class with the test automation
framework of your choosing. The following example uses
[`ava`](https://www.npmjs.com/package/ava), but other popular choices like Jest
or Mocha would work as well:
```js title='test.js' @ts-nocheck
const test = require('ava')
const electronPath = require('electron')
const { TestDriver } = require('./testDriver')
const app = new TestDriver({
path: electronPath,
args: ['./app'],
env: {
NODE_ENV: 'test'
}
})
test.before(async t => {
await app.isReady
})
test.after.always('cleanup', async t => {
await app.stop()
})
```
[chrome-driver]: https://sites.google.com/chromium.org/driver/
[Puppeteer]: https://github.com/puppeteer/puppeteer
[playwright-electron]: https://playwright.dev/docs/api/class-electron/
[playwright-electronapplication]: https://playwright.dev/docs/api/class-electronapplication
[playwright-page]: https://playwright.dev/docs/api/class-page
[playwright-releases]: https://github.com/microsoft/playwright/releases
[playwright-test-config]: https://playwright.dev/docs/api/class-testconfig#test-config-test-match
[playwright-test-runners]: https://playwright.dev/docs/test-runners/
[Chrome DevTools Protocol]: https://chromedevtools.github.io/devtools-protocol/