Use C++11 version of CreateFunctionTemplate

This commit is contained in:
Cheng Zhao 2015-07-23 14:58:03 +08:00
parent 41cd6d13c9
commit 656e403f01
2 changed files with 122 additions and 734 deletions

View file

@ -1,7 +1,3 @@
// This file was GENERATED by command:
// pump.py function_template.h.pump
// DO NOT EDIT BY HAND!!!
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE.chromium file.
@ -17,8 +13,6 @@
namespace mate {
class PerIsolateData;
enum CreateFunctionTemplateFlags {
HolderIsFirstArgument = 1 << 0,
SafeAfterDestroyed = 1 << 1,
@ -96,221 +90,6 @@ class CallbackHolder : public CallbackHolderBase {
DISALLOW_COPY_AND_ASSIGN(CallbackHolder);
};
// This set of templates invokes a base::Callback, converts the return type to a
// JavaScript value, and returns that value to script via the provided
// mate::Arguments object.
//
// In C++, you can declare the function foo(void), but you can't pass a void
// expression to foo. As a result, we must specialize the case of Callbacks that
// have the void return type.
template<typename R, typename P1 = void, typename P2 = void,
typename P3 = void, typename P4 = void, typename P5 = void,
typename P6 = void, typename P7 = void>
struct Invoker {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<R(P1, P2, P3, P4, P5, P6, P7)>& callback,
const P1& a1,
const P2& a2,
const P3& a3,
const P4& a4,
const P5& a5,
const P6& a6,
const P7& a7) {
MATE_METHOD_RETURN(callback.Run(a1, a2, a3, a4, a5, a6, a7));
}
};
template<typename P1, typename P2, typename P3, typename P4, typename P5,
typename P6, typename P7>
struct Invoker<void, P1, P2, P3, P4, P5, P6, P7> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<void(P1, P2, P3, P4, P5, P6, P7)>& callback,
const P1& a1,
const P2& a2,
const P3& a3,
const P4& a4,
const P5& a5,
const P6& a6,
const P7& a7) {
callback.Run(a1, a2, a3, a4, a5, a6, a7);
MATE_METHOD_RETURN_UNDEFINED();
}
};
template<typename R, typename P1, typename P2, typename P3, typename P4,
typename P5, typename P6>
struct Invoker<R, P1, P2, P3, P4, P5, P6, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<R(P1, P2, P3, P4, P5, P6)>& callback,
const P1& a1,
const P2& a2,
const P3& a3,
const P4& a4,
const P5& a5,
const P6& a6) {
MATE_METHOD_RETURN(callback.Run(a1, a2, a3, a4, a5, a6));
}
};
template<typename P1, typename P2, typename P3, typename P4, typename P5,
typename P6>
struct Invoker<void, P1, P2, P3, P4, P5, P6, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<void(P1, P2, P3, P4, P5, P6)>& callback,
const P1& a1,
const P2& a2,
const P3& a3,
const P4& a4,
const P5& a5,
const P6& a6) {
callback.Run(a1, a2, a3, a4, a5, a6);
MATE_METHOD_RETURN_UNDEFINED();
}
};
template<typename R, typename P1, typename P2, typename P3, typename P4,
typename P5>
struct Invoker<R, P1, P2, P3, P4, P5, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<R(P1, P2, P3, P4, P5)>& callback,
const P1& a1,
const P2& a2,
const P3& a3,
const P4& a4,
const P5& a5) {
MATE_METHOD_RETURN(callback.Run(a1, a2, a3, a4, a5));
}
};
template<typename P1, typename P2, typename P3, typename P4, typename P5>
struct Invoker<void, P1, P2, P3, P4, P5, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<void(P1, P2, P3, P4, P5)>& callback,
const P1& a1,
const P2& a2,
const P3& a3,
const P4& a4,
const P5& a5) {
callback.Run(a1, a2, a3, a4, a5);
MATE_METHOD_RETURN_UNDEFINED();
}
};
template<typename R, typename P1, typename P2, typename P3, typename P4>
struct Invoker<R, P1, P2, P3, P4, void, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<R(P1, P2, P3, P4)>& callback,
const P1& a1,
const P2& a2,
const P3& a3,
const P4& a4) {
MATE_METHOD_RETURN(callback.Run(a1, a2, a3, a4));
}
};
template<typename P1, typename P2, typename P3, typename P4>
struct Invoker<void, P1, P2, P3, P4, void, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<void(P1, P2, P3, P4)>& callback,
const P1& a1,
const P2& a2,
const P3& a3,
const P4& a4) {
callback.Run(a1, a2, a3, a4);
MATE_METHOD_RETURN_UNDEFINED();
}
};
template<typename R, typename P1, typename P2, typename P3>
struct Invoker<R, P1, P2, P3, void, void, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<R(P1, P2, P3)>& callback,
const P1& a1,
const P2& a2,
const P3& a3) {
MATE_METHOD_RETURN(callback.Run(a1, a2, a3));
}
};
template<typename P1, typename P2, typename P3>
struct Invoker<void, P1, P2, P3, void, void, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<void(P1, P2, P3)>& callback,
const P1& a1,
const P2& a2,
const P3& a3) {
callback.Run(a1, a2, a3);
MATE_METHOD_RETURN_UNDEFINED();
}
};
template<typename R, typename P1, typename P2>
struct Invoker<R, P1, P2, void, void, void, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<R(P1, P2)>& callback,
const P1& a1,
const P2& a2) {
MATE_METHOD_RETURN(callback.Run(a1, a2));
}
};
template<typename P1, typename P2>
struct Invoker<void, P1, P2, void, void, void, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<void(P1, P2)>& callback,
const P1& a1,
const P2& a2) {
callback.Run(a1, a2);
MATE_METHOD_RETURN_UNDEFINED();
}
};
template<typename R, typename P1>
struct Invoker<R, P1, void, void, void, void, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<R(P1)>& callback,
const P1& a1) {
MATE_METHOD_RETURN(callback.Run(a1));
}
};
template<typename P1>
struct Invoker<void, P1, void, void, void, void, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<void(P1)>& callback,
const P1& a1) {
callback.Run(a1);
MATE_METHOD_RETURN_UNDEFINED();
}
};
template<typename R>
struct Invoker<R, void, void, void, void, void, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<R()>& callback) {
MATE_METHOD_RETURN(callback.Run());
}
};
template<>
struct Invoker<void, void, void, void, void, void, void, void> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<void()>& callback) {
callback.Run();
MATE_METHOD_RETURN_UNDEFINED();
}
};
template<typename T>
bool GetNextArgument(Arguments* args, int create_flags, bool is_first,
T* result) {
@ -341,278 +120,120 @@ inline bool GetNextArgument(Arguments* args, int create_flags,
return true;
}
// Classes for generating and storing an argument pack of integer indices
// (based on well-known "indices trick", see: http://goo.gl/bKKojn):
template <size_t... indices>
struct IndicesHolder {};
template <size_t requested_index, size_t... indices>
struct IndicesGenerator {
using type = typename IndicesGenerator<requested_index - 1,
requested_index - 1,
indices...>::type;
};
template <size_t... indices>
struct IndicesGenerator<0, indices...> {
using type = IndicesHolder<indices...>;
};
// Class template for extracting and storing single argument for callback
// at position |index|.
template <size_t index, typename ArgType>
struct ArgumentHolder {
using ArgLocalType = typename CallbackParamTraits<ArgType>::LocalType;
ArgLocalType value;
bool ok;
ArgumentHolder(Arguments* args, int create_flags)
: ok(false) {
if (index == 0 &&
(create_flags & HolderIsFirstArgument) &&
!(create_flags & SafeAfterDestroyed) &&
DestroyedChecker<ArgLocalType>::IsDestroyed(args)) {
args->ThrowError("Object has been destroyed");
return;
}
ok = GetNextArgument(args, create_flags, index == 0, &value);
if (!ok) {
// Ideally we would include the expected c++ type in the error
// message which we can access via typeid(ArgType).name()
// however we compile with no-rtti, which disables typeid.
args->ThrowError();
}
}
};
// Class template for converting arguments from JavaScript to C++ and running
// the callback with them.
template <typename IndicesType, typename... ArgTypes>
class Invoker {};
template <size_t... indices, typename... ArgTypes>
class Invoker<IndicesHolder<indices...>, ArgTypes...>
: public ArgumentHolder<indices, ArgTypes>... {
public:
// Invoker<> inherits from ArgumentHolder<> for each argument.
// C++ has always been strict about the class initialization order,
// so it is guaranteed ArgumentHolders will be initialized (and thus, will
// extract arguments from Arguments) in the right order.
Invoker(Arguments* args, int create_flags)
: ArgumentHolder<indices, ArgTypes>(args, create_flags)..., args_(args) {
// GCC thinks that create_flags is going unused, even though the
// expansion above clearly makes use of it. Per jyasskin@, casting
// to void is the commonly accepted way to convince the compiler
// that you're actually using a parameter/varible.
(void)create_flags;
}
bool IsOK() {
return And(ArgumentHolder<indices, ArgTypes>::ok...);
}
template <typename ReturnType>
void DispatchToCallback(base::Callback<ReturnType(ArgTypes...)> callback) {
args_->Return(callback.Run(ArgumentHolder<indices, ArgTypes>::value...));
}
// In C++, you can declare the function foo(void), but you can't pass a void
// expression to foo. As a result, we must specialize the case of Callbacks
// that have the void return type.
void DispatchToCallback(base::Callback<void(ArgTypes...)> callback) {
callback.Run(ArgumentHolder<indices, ArgTypes>::value...);
}
private:
static bool And() { return true; }
template <typename... T>
static bool And(bool arg1, T... args) {
return arg1 && And(args...);
}
Arguments* args_;
};
// DispatchToCallback converts all the JavaScript arguments to C++ types and
// invokes the base::Callback.
template<typename Sig>
struct Dispatcher {
};
template <typename Sig>
struct Dispatcher {};
template<typename R>
struct Dispatcher<R()> {
static MATE_METHOD(DispatchToCallback) {
template <typename ReturnType, typename... ArgTypes>
struct Dispatcher<ReturnType(ArgTypes...)> {
static void DispatchToCallback(
const v8::FunctionCallbackInfo<v8::Value>& info) {
Arguments args(info);
v8::Local<v8::External> v8_holder;
CHECK(args.GetData(&v8_holder));
CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
v8_holder->Value());
typedef CallbackHolder<R()> HolderT;
typedef CallbackHolder<ReturnType(ArgTypes...)> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
return Invoker<R>::Go(args, holder->callback);
}
};
template<typename R, typename P1>
struct Dispatcher<R(P1)> {
static MATE_METHOD(DispatchToCallback) {
Arguments args(info);
v8::Local<v8::External> v8_holder;
CHECK(args.GetData(&v8_holder));
CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
v8_holder->Value());
typedef CallbackHolder<R(P1)> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
typename CallbackParamTraits<P1>::LocalType a1;
if ((holder->flags & HolderIsFirstArgument) &&
!(holder->flags & SafeAfterDestroyed) &&
DestroyedChecker<typename
CallbackParamTraits<P1>::LocalType>::IsDestroyed(&args)) {
args.ThrowError("Object has been destroyed");
MATE_METHOD_RETURN_UNDEFINED();
}
if (!GetNextArgument(&args, holder->flags, true, &a1)) {
args.ThrowError();
MATE_METHOD_RETURN_UNDEFINED();
}
return Invoker<R, P1>::Go(args, holder->callback, a1);
}
};
template<typename R, typename P1, typename P2>
struct Dispatcher<R(P1, P2)> {
static MATE_METHOD(DispatchToCallback) {
Arguments args(info);
v8::Local<v8::External> v8_holder;
CHECK(args.GetData(&v8_holder));
CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
v8_holder->Value());
typedef CallbackHolder<R(P1, P2)> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
typename CallbackParamTraits<P1>::LocalType a1;
typename CallbackParamTraits<P2>::LocalType a2;
if ((holder->flags & HolderIsFirstArgument) &&
!(holder->flags & SafeAfterDestroyed) &&
DestroyedChecker<typename
CallbackParamTraits<P1>::LocalType>::IsDestroyed(&args)) {
args.ThrowError("Object has been destroyed");
MATE_METHOD_RETURN_UNDEFINED();
}
if (!GetNextArgument(&args, holder->flags, true, &a1) ||
!GetNextArgument(&args, holder->flags, false, &a2)) {
args.ThrowError();
MATE_METHOD_RETURN_UNDEFINED();
}
return Invoker<R, P1, P2>::Go(args, holder->callback, a1, a2);
}
};
template<typename R, typename P1, typename P2, typename P3>
struct Dispatcher<R(P1, P2, P3)> {
static MATE_METHOD(DispatchToCallback) {
Arguments args(info);
v8::Local<v8::External> v8_holder;
CHECK(args.GetData(&v8_holder));
CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
v8_holder->Value());
typedef CallbackHolder<R(P1, P2, P3)> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
typename CallbackParamTraits<P1>::LocalType a1;
typename CallbackParamTraits<P2>::LocalType a2;
typename CallbackParamTraits<P3>::LocalType a3;
if ((holder->flags & HolderIsFirstArgument) &&
!(holder->flags & SafeAfterDestroyed) &&
DestroyedChecker<typename
CallbackParamTraits<P1>::LocalType>::IsDestroyed(&args)) {
args.ThrowError("Object has been destroyed");
MATE_METHOD_RETURN_UNDEFINED();
}
if (!GetNextArgument(&args, holder->flags, true, &a1) ||
!GetNextArgument(&args, holder->flags, false, &a2) ||
!GetNextArgument(&args, holder->flags, false, &a3)) {
args.ThrowError();
MATE_METHOD_RETURN_UNDEFINED();
}
return Invoker<R, P1, P2, P3>::Go(args, holder->callback, a1, a2, a3);
}
};
template<typename R, typename P1, typename P2, typename P3, typename P4>
struct Dispatcher<R(P1, P2, P3, P4)> {
static MATE_METHOD(DispatchToCallback) {
Arguments args(info);
v8::Local<v8::External> v8_holder;
CHECK(args.GetData(&v8_holder));
CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
v8_holder->Value());
typedef CallbackHolder<R(P1, P2, P3, P4)> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
typename CallbackParamTraits<P1>::LocalType a1;
typename CallbackParamTraits<P2>::LocalType a2;
typename CallbackParamTraits<P3>::LocalType a3;
typename CallbackParamTraits<P4>::LocalType a4;
if ((holder->flags & HolderIsFirstArgument) &&
!(holder->flags & SafeAfterDestroyed) &&
DestroyedChecker<typename
CallbackParamTraits<P1>::LocalType>::IsDestroyed(&args)) {
args.ThrowError("Object has been destroyed");
MATE_METHOD_RETURN_UNDEFINED();
}
if (!GetNextArgument(&args, holder->flags, true, &a1) ||
!GetNextArgument(&args, holder->flags, false, &a2) ||
!GetNextArgument(&args, holder->flags, false, &a3) ||
!GetNextArgument(&args, holder->flags, false, &a4)) {
args.ThrowError();
MATE_METHOD_RETURN_UNDEFINED();
}
return Invoker<R, P1, P2, P3, P4>::Go(args, holder->callback, a1, a2, a3,
a4);
}
};
template<typename R, typename P1, typename P2, typename P3, typename P4,
typename P5>
struct Dispatcher<R(P1, P2, P3, P4, P5)> {
static MATE_METHOD(DispatchToCallback) {
Arguments args(info);
v8::Local<v8::External> v8_holder;
CHECK(args.GetData(&v8_holder));
CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
v8_holder->Value());
typedef CallbackHolder<R(P1, P2, P3, P4, P5)> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
typename CallbackParamTraits<P1>::LocalType a1;
typename CallbackParamTraits<P2>::LocalType a2;
typename CallbackParamTraits<P3>::LocalType a3;
typename CallbackParamTraits<P4>::LocalType a4;
typename CallbackParamTraits<P5>::LocalType a5;
if ((holder->flags & HolderIsFirstArgument) &&
!(holder->flags & SafeAfterDestroyed) &&
DestroyedChecker<typename
CallbackParamTraits<P1>::LocalType>::IsDestroyed(&args)) {
args.ThrowError("Object has been destroyed");
MATE_METHOD_RETURN_UNDEFINED();
}
if (!GetNextArgument(&args, holder->flags, true, &a1) ||
!GetNextArgument(&args, holder->flags, false, &a2) ||
!GetNextArgument(&args, holder->flags, false, &a3) ||
!GetNextArgument(&args, holder->flags, false, &a4) ||
!GetNextArgument(&args, holder->flags, false, &a5)) {
args.ThrowError();
MATE_METHOD_RETURN_UNDEFINED();
}
return Invoker<R, P1, P2, P3, P4, P5>::Go(args, holder->callback, a1, a2,
a3, a4, a5);
}
};
template<typename R, typename P1, typename P2, typename P3, typename P4,
typename P5, typename P6>
struct Dispatcher<R(P1, P2, P3, P4, P5, P6)> {
static MATE_METHOD(DispatchToCallback) {
Arguments args(info);
v8::Local<v8::External> v8_holder;
CHECK(args.GetData(&v8_holder));
CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
v8_holder->Value());
typedef CallbackHolder<R(P1, P2, P3, P4, P5, P6)> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
typename CallbackParamTraits<P1>::LocalType a1;
typename CallbackParamTraits<P2>::LocalType a2;
typename CallbackParamTraits<P3>::LocalType a3;
typename CallbackParamTraits<P4>::LocalType a4;
typename CallbackParamTraits<P5>::LocalType a5;
typename CallbackParamTraits<P6>::LocalType a6;
if ((holder->flags & HolderIsFirstArgument) &&
!(holder->flags & SafeAfterDestroyed) &&
DestroyedChecker<typename
CallbackParamTraits<P1>::LocalType>::IsDestroyed(&args)) {
args.ThrowError("Object has been destroyed");
MATE_METHOD_RETURN_UNDEFINED();
}
if (!GetNextArgument(&args, holder->flags, true, &a1) ||
!GetNextArgument(&args, holder->flags, false, &a2) ||
!GetNextArgument(&args, holder->flags, false, &a3) ||
!GetNextArgument(&args, holder->flags, false, &a4) ||
!GetNextArgument(&args, holder->flags, false, &a5) ||
!GetNextArgument(&args, holder->flags, false, &a6)) {
args.ThrowError();
MATE_METHOD_RETURN_UNDEFINED();
}
return Invoker<R, P1, P2, P3, P4, P5, P6>::Go(args, holder->callback, a1,
a2, a3, a4, a5, a6);
}
};
template<typename R, typename P1, typename P2, typename P3, typename P4,
typename P5, typename P6, typename P7>
struct Dispatcher<R(P1, P2, P3, P4, P5, P6, P7)> {
static MATE_METHOD(DispatchToCallback) {
Arguments args(info);
v8::Local<v8::External> v8_holder;
CHECK(args.GetData(&v8_holder));
CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
v8_holder->Value());
typedef CallbackHolder<R(P1, P2, P3, P4, P5, P6, P7)> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
typename CallbackParamTraits<P1>::LocalType a1;
typename CallbackParamTraits<P2>::LocalType a2;
typename CallbackParamTraits<P3>::LocalType a3;
typename CallbackParamTraits<P4>::LocalType a4;
typename CallbackParamTraits<P5>::LocalType a5;
typename CallbackParamTraits<P6>::LocalType a6;
typename CallbackParamTraits<P7>::LocalType a7;
if ((holder->flags & HolderIsFirstArgument) &&
!(holder->flags & SafeAfterDestroyed) &&
DestroyedChecker<typename
CallbackParamTraits<P1>::LocalType>::IsDestroyed(&args)) {
args.ThrowError("Object has been destroyed");
MATE_METHOD_RETURN_UNDEFINED();
}
if (!GetNextArgument(&args, holder->flags, true, &a1) ||
!GetNextArgument(&args, holder->flags, false, &a2) ||
!GetNextArgument(&args, holder->flags, false, &a3) ||
!GetNextArgument(&args, holder->flags, false, &a4) ||
!GetNextArgument(&args, holder->flags, false, &a5) ||
!GetNextArgument(&args, holder->flags, false, &a6) ||
!GetNextArgument(&args, holder->flags, false, &a7)) {
args.ThrowError();
MATE_METHOD_RETURN_UNDEFINED();
}
return Invoker<R, P1, P2, P3, P4, P5, P6, P7>::Go(args, holder->callback,
a1, a2, a3, a4, a5, a6, a7);
using Indices = typename IndicesGenerator<sizeof...(ArgTypes)>::type;
Invoker<Indices, ArgTypes...> invoker(&args, holder->flags);
if (invoker.IsOK())
invoker.DispatchToCallback(holder->callback);
}
};
@ -621,8 +242,13 @@ struct Dispatcher<R(P1, P2, P3, P4, P5, P6, P7)> {
// CreateFunctionTemplate creates a v8::FunctionTemplate that will create
// JavaScript functions that execute a provided C++ function or base::Callback.
// JavaScript arguments are automatically converted via mate::Converter, as is
// JavaScript arguments are automatically converted via gin::Converter, as is
// the return value of the C++ function, if any.
//
// NOTE: V8 caches FunctionTemplates for a lifetime of a web page for its own
// internal reasons, thus it is generally a good idea to cache the template
// returned by this function. Otherwise, repeated method invocations from JS
// will create substantial memory leaks. See http://crbug.com/463487.
template<typename Sig>
v8::Local<v8::FunctionTemplate> CreateFunctionTemplate(
v8::Isolate* isolate, const base::Callback<Sig> callback,
@ -631,14 +257,26 @@ v8::Local<v8::FunctionTemplate> CreateFunctionTemplate(
HolderT* holder = new HolderT(isolate, callback, callback_flags);
return v8::FunctionTemplate::New(
#if NODE_VERSION_AT_LEAST(0, 11, 11)
isolate,
#endif
&internal::Dispatcher<Sig>::DispatchToCallback,
ConvertToV8<v8::Local<v8::External> >(isolate,
holder->GetHandle(isolate)));
}
// CreateFunctionHandler installs a CallAsFunction handler on the given
// object template that forwards to a provided C++ function or base::Callback.
template<typename Sig>
void CreateFunctionHandler(v8::Isolate* isolate,
v8::Local<v8::ObjectTemplate> tmpl,
const base::Callback<Sig> callback,
int callback_flags = 0) {
typedef internal::CallbackHolder<Sig> HolderT;
HolderT* holder = new HolderT(isolate, callback, callback_flags);
tmpl->SetCallAsFunctionHandler(&internal::Dispatcher<Sig>::DispatchToCallback,
ConvertToV8<v8::Local<v8::External> >(
isolate, holder->GetHandle(isolate)));
}
} // namespace mate
#endif // NATIVE_MATE_FUNCTION_TEMPLATE_H_

View file

@ -1,250 +0,0 @@
$$ This is a pump file for generating file templates. Pump is a python
$$ script that is part of the Google Test suite of utilities. Description
$$ can be found here:
$$
$$ http://code.google.com/p/googletest/wiki/PumpManual
$$
$var MAX_ARITY = 7
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE.chromium file.
#ifndef NATIVE_MATE_FUNCTION_TEMPLATE_H_
#define NATIVE_MATE_FUNCTION_TEMPLATE_H_
#include "base/callback.h"
#include "base/logging.h"
#include "native_mate/arguments.h"
#include "native_mate/wrappable.h"
#include "v8/include/v8.h"
namespace mate {
class PerIsolateData;
enum CreateFunctionTemplateFlags {
HolderIsFirstArgument = 1 << 0,
SafeAfterDestroyed = 1 << 1,
};
namespace internal {
// Check if the class has been destroyed.
template<typename T, typename Enable = void>
struct DestroyedChecker {
static bool IsDestroyed(Arguments* args) {
return false;
}
};
template<typename T>
struct DestroyedChecker<T*, typename enable_if<
is_convertible<T*, Wrappable*>::value>::type> {
static bool IsDestroyed(Arguments* args) {
T* object;
if (args->GetHolder(&object))
return static_cast<Wrappable*>(object)->IsDestroyed();
else
return false;
}
};
template<typename T>
struct CallbackParamTraits {
typedef T LocalType;
};
template<typename T>
struct CallbackParamTraits<const T&> {
typedef T LocalType;
};
template<typename T>
struct CallbackParamTraits<const T*> {
typedef T* LocalType;
};
// CallbackHolder and CallbackHolderBase are used to pass a base::Callback from
// CreateFunctionTemplate through v8 (via v8::FunctionTemplate) to
// DispatchToCallback, where it is invoked.
// This simple base class is used so that we can share a single object template
// among every CallbackHolder instance.
class CallbackHolderBase {
public:
v8::Local<v8::External> GetHandle(v8::Isolate* isolate);
protected:
explicit CallbackHolderBase(v8::Isolate* isolate);
virtual ~CallbackHolderBase();
private:
static MATE_WEAK_CALLBACK(WeakCallback, v8::External, CallbackHolderBase);
v8::UniquePersistent<v8::External> v8_ref_;
DISALLOW_COPY_AND_ASSIGN(CallbackHolderBase);
};
template<typename Sig>
class CallbackHolder : public CallbackHolderBase {
public:
CallbackHolder(v8::Isolate* isolate,
const base::Callback<Sig>& callback,
int flags)
: CallbackHolderBase(isolate), callback(callback), flags(flags) {}
base::Callback<Sig> callback;
int flags;
private:
virtual ~CallbackHolder() {}
DISALLOW_COPY_AND_ASSIGN(CallbackHolder);
};
// This set of templates invokes a base::Callback, converts the return type to a
// JavaScript value, and returns that value to script via the provided
// mate::Arguments object.
//
// In C++, you can declare the function foo(void), but you can't pass a void
// expression to foo. As a result, we must specialize the case of Callbacks that
// have the void return type.
$range ARITY 0..MAX_ARITY
$for ARITY [[
$var INV_ARITY = MAX_ARITY - ARITY
$range ARG 1..INV_ARITY
$range VOID INV_ARITY+1..MAX_ARITY
$if ARITY == 0 [[
template<typename R$for ARG [[, typename P$(ARG) = void]]>
struct Invoker {
]] $else [[
template<typename R$for ARG [[, typename P$(ARG)]]>
struct Invoker<R$for ARG [[, P$(ARG)]]$for VOID [[, void]]> {
]]
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<R($for ARG , [[P$(ARG)]])>& callback$for ARG [[,
const P$(ARG)& a$(ARG)]]) {
MATE_METHOD_RETURN(callback.Run($for ARG, [[a$(ARG)]]));
}
};
template<$for ARG , [[typename P$(ARG)]]>
struct Invoker<void$for ARG [[, P$(ARG)]]$for VOID [[, void]]> {
inline static MATE_METHOD_RETURN_TYPE Go(
Arguments& args,
const base::Callback<void($for ARG , [[P$(ARG)]])>& callback$for ARG [[,
const P$(ARG)& a$(ARG)]]) {
callback.Run($for ARG, [[a$(ARG)]]);
MATE_METHOD_RETURN_UNDEFINED();
}
};
]]
template<typename T>
bool GetNextArgument(Arguments* args, int create_flags, bool is_first,
T* result) {
if (is_first && (create_flags & HolderIsFirstArgument) != 0) {
return args->GetHolder(result);
} else {
return args->GetNext(result);
}
}
// For advanced use cases, we allow callers to request the unparsed Arguments
// object and poke around in it directly.
inline bool GetNextArgument(Arguments* args, int create_flags, bool is_first,
Arguments* result) {
*result = *args;
return true;
}
inline bool GetNextArgument(Arguments* args, int create_flags, bool is_first,
Arguments** result) {
*result = args;
return true;
}
// It's common for clients to just need the isolate, so we make that easy.
inline bool GetNextArgument(Arguments* args, int create_flags,
bool is_first, v8::Isolate** result) {
*result = args->isolate();
return true;
}
// DispatchToCallback converts all the JavaScript arguments to C++ types and
// invokes the base::Callback.
template<typename Sig>
struct Dispatcher {
};
$range ARITY 0..MAX_ARITY
$for ARITY [[
$range ARG 1..ARITY
template<typename R$for ARG [[, typename P$(ARG)]]>
struct Dispatcher<R($for ARG , [[P$(ARG)]])> {
static MATE_METHOD(DispatchToCallback) {
Arguments args(info);
v8::Local<v8::External> v8_holder;
CHECK(args.GetData(&v8_holder));
CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
v8_holder->Value());
typedef CallbackHolder<R($for ARG , [[P$(ARG)]])> HolderT;
HolderT* holder = static_cast<HolderT*>(holder_base);
$if ARITY != 0 [[
$for ARG [[ typename CallbackParamTraits<P$(ARG)>::LocalType a$(ARG);
]]
if ((holder->flags & HolderIsFirstArgument) &&
!(holder->flags & SafeAfterDestroyed) &&
DestroyedChecker<typename CallbackParamTraits<P1>::LocalType>::IsDestroyed(&args)) {
args.ThrowError("Object has been destroyed");
MATE_METHOD_RETURN_UNDEFINED();
}
if ($for ARG ||
[[!GetNextArgument(&args, holder->flags, $if ARG == 1 [[true]] $else [[false]], &a$(ARG))]]) {
args.ThrowError();
MATE_METHOD_RETURN_UNDEFINED();
}
]]
return Invoker<R$for ARG [[, P$(ARG)]]>::Go(args, holder->callback$for ARG [[, a$(ARG)]]);
}
};
]]
} // namespace internal
// CreateFunctionTemplate creates a v8::FunctionTemplate that will create
// JavaScript functions that execute a provided C++ function or base::Callback.
// JavaScript arguments are automatically converted via mate::Converter, as is
// the return value of the C++ function, if any.
template<typename Sig>
v8::Local<v8::FunctionTemplate> CreateFunctionTemplate(
v8::Isolate* isolate, const base::Callback<Sig> callback,
int callback_flags = 0) {
typedef internal::CallbackHolder<Sig> HolderT;
HolderT* holder = new HolderT(isolate, callback, callback_flags);
return v8::FunctionTemplate::New(
#if NODE_VERSION_AT_LEAST(0, 11, 11)
isolate,
#endif
&internal::Dispatcher<Sig>::DispatchToCallback,
ConvertToV8<v8::Local<v8::External> >(isolate,
holder->GetHandle(isolate)));
}
} // namespace mate
#endif // NATIVE_MATE_FUNCTION_TEMPLATE_H_