* commit '6e890ef6f6':
  rtc: rk630: add rtc for rk630
  mfd: rk630: add rtc regmap and irq
  mfd: rk630: Set phy clock from ref clock
  mfd: rk630: Add rk630 ref clk

Change-Id: Ibe62c780b30b34810d7c54d501b9cd925505fb94

Conflicts:
	drivers/rtc/Kconfig
This commit is contained in:
Tao Huang 2023-11-22 17:24:34 +08:00
commit 4ed3c62e01
7 changed files with 949 additions and 145 deletions

View file

@ -49,6 +49,15 @@ rk630_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id)
return ret;
}
rk630->rtc = devm_regmap_init_i2c(client, &rk630_rtc_regmap_config);
if (IS_ERR(rk630->rtc)) {
ret = PTR_ERR(rk630->rtc);
dev_err(dev, "failed to allocate rtc register map: %d\n", ret);
return ret;
}
rk630->irq = client->irq;
return rk630_core_probe(rk630);
}

View file

@ -213,6 +213,16 @@ rk630_spi_probe(struct spi_device *spi)
return ret;
}
rk630->rtc = devm_regmap_init(&spi->dev, &rk630_regmap,
&spi->dev, &rk630_rtc_regmap_config);
if (IS_ERR(rk630->rtc)) {
ret = PTR_ERR(rk630->rtc);
dev_err(rk630->dev, "Failed to initialize rtc regmap: %d\n",
ret);
return ret;
}
rk630->irq = spi->irq;
ret = rk630_core_probe(rk630);
if (ret)
return ret;

View file

@ -13,7 +13,7 @@
#include <linux/gpio/consumer.h>
#include <linux/mfd/rk630.h>
static int rk630_macphy_enable(struct rk630 *rk630)
static int rk630_macphy_enable(struct rk630 *rk630, unsigned long rate)
{
u32 val;
int ret;
@ -68,8 +68,23 @@ static int rk630_macphy_enable(struct rk630 *rk630)
return ret;
}
/* mode sel: RMII && clock sel: 24M && BGS value: OTP && id */
val = (2 << 14) | (0 << 12) | (0x1 << 8) | (6 << 5) | 1;
/* mode sel: RMII && BGS value: OTP && id */
val = (2 << 14) | (0 << 12) | (0x1 << 8) | 1;
switch (rate) {
case 24000000:
val |= 0x6 << 5;
break;
case 25000000:
val |= 0x4 << 5;
break;
case 27000000:
val |= 0x5 << 5;
break;
default:
dev_err(rk630->dev, "Unsupported clock rate: %ld\n", rate);
return -EINVAL;
}
ret = regmap_write(rk630->grf, GRF_REG(0x404), val | 0xffff0000);
if (ret != 0) {
dev_err(rk630->dev, "Could not write to GRF: %d\n", ret);
@ -101,6 +116,10 @@ static const struct mfd_cell rk630_devs[] = {
.name = "rk630-tve",
.of_compatible = "rockchip,rk630-tve",
},
{
.name = "rk630-rtc",
.of_compatible = "rockchip,rk630-rtc",
},
{
.name = "rk630-macphy",
.of_compatible = "rockchip,rk630-macphy",
@ -164,12 +183,58 @@ const struct regmap_config rk630_cru_regmap_config = {
};
EXPORT_SYMBOL_GPL(rk630_cru_regmap_config);
static const struct regmap_range rk630_rtc_readable_ranges[] = {
regmap_reg_range(RTC_SET_SECONDS, RTC_CNT_3),
};
static const struct regmap_access_table rk630_rtc_readable_table = {
.yes_ranges = rk630_rtc_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(rk630_rtc_readable_ranges),
};
const struct regmap_config rk630_rtc_regmap_config = {
.name = "rtc",
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = RTC_MAX_REGISTER,
.reg_format_endian = REGMAP_ENDIAN_NATIVE,
.val_format_endian = REGMAP_ENDIAN_NATIVE,
.rd_table = &rk630_rtc_readable_table,
};
EXPORT_SYMBOL_GPL(rk630_rtc_regmap_config);
int rk630_core_probe(struct rk630 *rk630)
{
bool macphy_enabled = false;
struct clk *ref_clk;
struct device_node *np;
unsigned long rate;
int ret;
if (!rk630->irq) {
dev_err(rk630->dev, "No interrupt support, no core IRQ\n");
return -EINVAL;
}
ref_clk = devm_clk_get(rk630->dev, "ref");
if (IS_ERR(ref_clk)) {
dev_err(rk630->dev, "failed to get ref clk source\n");
return PTR_ERR(ref_clk);
}
ret = clk_prepare_enable(ref_clk);
if (ret < 0) {
dev_err(rk630->dev, "failed to enable ref clk - %d\n", ret);
return ret;
}
rate = clk_get_rate(ref_clk);
ret = devm_add_action_or_reset(rk630->dev, (void (*) (void *))clk_disable_unprepare,
ref_clk);
if (ret)
return ret;
rk630->reset_gpio = devm_gpiod_get(rk630->dev, "reset", 0);
if (IS_ERR(rk630->reset_gpio)) {
ret = PTR_ERR(rk630->reset_gpio);
@ -183,6 +248,16 @@ int rk630_core_probe(struct rk630 *rk630)
usleep_range(50000, 60000);
gpiod_direction_output(rk630->reset_gpio, 0);
/**
* If rtc output clamp is enabled, rtc regs can't be accessed,
* RK630 irq add will failed.
*/
regmap_update_bits(rk630->grf, PLUMAGE_GRF_SOC_CON0,
RTC_CLAMP_EN_MASK, RTC_CLAMP_EN(1));
/* disable ext_off\vbat_det\msec\sys_int\periodic interrupt by default */
regmap_write(rk630->rtc, RTC_INT1_EN, 0);
ret = devm_mfd_add_devices(rk630->dev, PLATFORM_DEVID_NONE,
rk630_devs, ARRAY_SIZE(rk630_devs),
NULL, 0, NULL);
@ -204,7 +279,7 @@ int rk630_core_probe(struct rk630 *rk630)
}
if (macphy_enabled)
rk630_macphy_enable(rk630);
rk630_macphy_enable(rk630, rate);
else
rk630_macphy_disable(rk630);

View file

@ -393,6 +393,16 @@ config RTC_DRV_NCT3018Y
This driver can also be built as a module, if so, the module will be
called "rtc-nct3018y".
config RTC_DRV_RK630
tristate "Rockchip RK630 RTC"
depends on MFD_RK630
help
If you say yes here you will get support for the
RTC of RK630.
This driver can also be built as a module. If so, the module
will be called rtc-rk630.
config RTC_DRV_RK808
tristate "Rockchip RK805/RK808/RK809/RK816/RK817/RK818 RTC"
depends on MFD_RK808

View file

@ -138,6 +138,7 @@ obj-$(CONFIG_RTC_DRV_R7301) += rtc-r7301.o
obj-$(CONFIG_RTC_DRV_R9701) += rtc-r9701.o
obj-$(CONFIG_RTC_DRV_RC5T583) += rtc-rc5t583.o
obj-$(CONFIG_RTC_DRV_RC5T619) += rtc-rc5t619.o
obj-$(CONFIG_RTC_DRV_RK630) += rtc-rk630.o
obj-$(CONFIG_RTC_DRV_RK808) += rtc-rk808.o
obj-$(CONFIG_RTC_DRV_ROCKCHIP) += rtc-rockchip.o
obj-$(CONFIG_RTC_DRV_RP5C01) += rtc-rp5c01.o

637
drivers/rtc/rtc-rk630.c Normal file
View file

@ -0,0 +1,637 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2023 Rockchip Electronics Co., Ltd
*/
#include <linux/bcd.h>
#include <linux/kernel.h>
#include <linux/mfd/rk630.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
/* RTC_CTRL_REG bitfields */
#define RTC_CTRL_REG_START_RTC BIT(0)
/* RK630 has a shadowed register for saving a "frozen" RTC time.
* When user setting "GET_TIME" to 1, the time will save in this shadowed
* register. If set "READSEL" to 1, user read rtc time register, actually
* get the time of that moment. If we need the real time, clr this bit.
*/
#define RTC_CTRL_REG_RTC_GET_TIME BIT(6)
#define RTC_CTRL_REG_RTC_READSEL_M BIT(7)
#define RTC_INT_REG_ALARM_EN BIT(7)
#define RTC_STATUS_MASK 0xFF
#define SECONDS_REG_MSK 0x7F
#define MINUTES_REG_MAK 0x7F
#define HOURS_REG_MSK 0x3F
#define DAYS_REG_MSK 0x3F
#define MONTHS_REG_MSK 0x1F
#define YEARS_REG_MSK 0xFF
#define WEEKS_REG_MSK 0x7
#define RTC_VREF_INIT 0x40
#define RTC_XO_START_MIR 0x40
#define NUM_TIME_REGS 8
#define NUM_ALARM_REGS 7
#define DISABLE_ALARM_INT 0x3F
#define ENABLE_ALARM_INT 0xFF
#define ALARM_INT_STATUS BIT(4)
#define CLK32K_TEST_EN BIT(0)
#define CLK32K_TEST_START BIT(0)
#define CLK32K_TEST_STATUS BIT(1)
#define CLK32K_TEST_DONE BIT(2)
#define CLK32K_TEST_LEN 2
#define CLK32K_COMP_DIR_ADD BIT(7)
#define CLK32K_COMP_EN BIT(2)
#define CLK32K_NO_COMP 0x1
#define CLK32K_TEST_REF_CLK 25000000
struct rk630_rtc {
struct rk630 *rk630;
struct rtc_device *rtc;
int irq;
unsigned int flag;
};
/* Read current time and date in RTC */
static int rk630_rtc_readtime(struct device *dev, struct rtc_time *tm)
{
struct rk630_rtc *rk630_rtc = dev_get_drvdata(dev);
struct rk630 *rk630 = rk630_rtc->rk630;
u32 rtc_data[NUM_TIME_REGS];
int ret;
int yearl, yearh;
/* Force an update of the shadowed registers right now */
ret = regmap_update_bits(rk630->rtc, RTC_CTRL,
RTC_CTRL_REG_RTC_GET_TIME,
RTC_CTRL_REG_RTC_GET_TIME);
if (ret) {
dev_err(dev, "Failed to update bits rtc_ctrl: %d\n", ret);
return ret;
}
/*
* After we set the GET_TIME bit, the rtc time can't be read
* immediately. So we should wait up to 31.25 us, about one cycle of
* 32khz. If we clear the GET_TIME bit here, the time of i2c transfer
* certainly more than 31.25us: 16 * 2.5us at 400kHz bus frequency.
*/
ret = regmap_update_bits(rk630->rtc, RTC_CTRL,
RTC_CTRL_REG_RTC_GET_TIME,
0);
if (ret) {
dev_err(dev, "Failed to update bits rtc_ctrl: %d\n", ret);
return ret;
}
ret = regmap_bulk_read(rk630->rtc, RTC_SET_SECONDS,
rtc_data, NUM_TIME_REGS);
if (ret) {
dev_err(dev, "Failed to bulk read rtc_data: %d\n", ret);
return ret;
}
tm->tm_sec = bcd2bin(rtc_data[0] & SECONDS_REG_MSK);
tm->tm_min = bcd2bin(rtc_data[1] & MINUTES_REG_MAK);
tm->tm_hour = bcd2bin(rtc_data[2] & HOURS_REG_MSK);
tm->tm_mday = bcd2bin(rtc_data[3] & DAYS_REG_MSK);
tm->tm_mon = (bcd2bin(rtc_data[4] & MONTHS_REG_MSK)) - 1;
yearl = (bcd2bin(rtc_data[5] & YEARS_REG_MSK));
yearh = (bcd2bin(rtc_data[6] & YEARS_REG_MSK));
tm->tm_year = yearh * 100 + yearl + 100;
tm->tm_wday = bcd2bin(rtc_data[7] & WEEKS_REG_MSK);
dev_dbg(dev, "RTC date/time %4d-%02d-%02d(%d) %02d:%02d:%02d\n",
1900 + tm->tm_year, tm->tm_mon + 1, tm->tm_mday,
tm->tm_wday, tm->tm_hour, tm->tm_min, tm->tm_sec);
return ret;
}
/* Set current time and date in RTC */
static int rk630_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct rk630_rtc *rk630_rtc = dev_get_drvdata(dev);
struct rk630 *rk630 = rk630_rtc->rk630;
u32 rtc_data[NUM_TIME_REGS];
int ret;
int yearl, yearh;
dev_dbg(dev, "set RTC date/time %4d-%02d-%02d(%d) %02d:%02d:%02d\n",
1900 + tm->tm_year, tm->tm_mon + 1, tm->tm_mday,
tm->tm_wday, tm->tm_hour, tm->tm_min, tm->tm_sec);
rtc_data[0] = bin2bcd(tm->tm_sec);
rtc_data[1] = bin2bcd(tm->tm_min);
rtc_data[2] = bin2bcd(tm->tm_hour);
rtc_data[3] = bin2bcd(tm->tm_mday);
rtc_data[4] = bin2bcd(tm->tm_mon + 1);
if (tm->tm_year > 199) {
yearh = (tm->tm_year - 100) / 100;
yearl = tm->tm_year - 100 - yearh * 100;
} else {
yearh = 0;
yearl = tm->tm_year - 100 - yearh * 100;
}
rtc_data[5] = bin2bcd(yearl);
rtc_data[6] = bin2bcd(yearh);
rtc_data[7] = bin2bcd(tm->tm_wday);
/* Stop RTC while updating the RTC registers */
ret = regmap_update_bits(rk630->rtc, RTC_CTRL,
RTC_CTRL_REG_START_RTC, 0);
if (ret) {
dev_err(dev, "Failed to update bits rtc_ctrl: %d\n", ret);
return ret;
}
ret = regmap_bulk_write(rk630->rtc, RTC_SET_SECONDS,
rtc_data, NUM_TIME_REGS);
if (ret) {
dev_err(dev, "Failed to bull write rtc_data: %d\n", ret);
return ret;
}
/* Start RTC again */
ret = regmap_update_bits(rk630->rtc, RTC_CTRL,
RTC_CTRL_REG_RTC_READSEL_M |
RTC_CTRL_REG_START_RTC,
RTC_CTRL_REG_RTC_READSEL_M |
RTC_CTRL_REG_START_RTC);
if (ret) {
dev_err(dev, "Failed to update bits RTC control: %d\n", ret);
return ret;
}
return 0;
}
/* Read alarm time and date in RTC */
static int rk630_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rk630_rtc *rk630_rtc = dev_get_drvdata(dev);
struct rk630 *rk630 = rk630_rtc->rk630;
u32 alrm_data[NUM_ALARM_REGS];
u32 int_reg;
int yearl, yearh;
int ret;
ret = regmap_bulk_read(rk630->rtc,
RTC_ALARM_SECONDS,
alrm_data, NUM_ALARM_REGS);
if (ret) {
dev_err(dev, "Failed to read RTC alarm date REG: %d\n", ret);
return ret;
}
alrm->time.tm_sec = bcd2bin(alrm_data[0] & SECONDS_REG_MSK);
alrm->time.tm_min = bcd2bin(alrm_data[1] & MINUTES_REG_MAK);
alrm->time.tm_hour = bcd2bin(alrm_data[2] & HOURS_REG_MSK);
alrm->time.tm_mday = bcd2bin(alrm_data[3] & DAYS_REG_MSK);
alrm->time.tm_mon = (bcd2bin(alrm_data[4] & MONTHS_REG_MSK)) - 1;
yearl = (bcd2bin(alrm_data[5] & YEARS_REG_MSK));
yearh = (bcd2bin(alrm_data[6] & YEARS_REG_MSK));
alrm->time.tm_year = yearh * 100 + yearl + 100;
ret = regmap_read(rk630->rtc, RTC_INT0_EN, &int_reg);
if (ret) {
dev_err(dev, "Failed to read RTC INT REG: %d\n", ret);
return ret;
}
dev_dbg(dev, "alrm read RTC date/time %4d-%02d-%02d(%d) %02d:%02d:%02d\n",
1900 + alrm->time.tm_year, alrm->time.tm_mon + 1,
alrm->time.tm_mday, alrm->time.tm_wday, alrm->time.tm_hour,
alrm->time.tm_min, alrm->time.tm_sec);
alrm->enabled = (int_reg & RTC_INT_REG_ALARM_EN) ? 1 : 0;
return 0;
}
static int rk630_rtc_stop_alarm(struct rk630_rtc *rk630_rtc)
{
struct rk630 *rk630 = rk630_rtc->rk630;
int ret;
ret = regmap_write(rk630->rtc, RTC_INT0_EN, DISABLE_ALARM_INT);
return ret;
}
static int rk630_rtc_start_alarm(struct rk630_rtc *rk630_rtc)
{
struct rk630 *rk630 = rk630_rtc->rk630;
int ret = 0;
ret = regmap_write(rk630->rtc, RTC_STATUS0, RTC_STATUS_MASK);
if (ret) {
dev_err(rk630->dev, "Failed to write RTC_STATUS0: %d\n", ret);
return ret;
}
ret = regmap_write(rk630->rtc, RTC_STATUS0, 0);
if (ret) {
dev_err(rk630->dev, "Failed to write RTC_STATUS0: %d\n", ret);
return ret;
}
ret = regmap_write(rk630->rtc, RTC_INT0_EN, ENABLE_ALARM_INT);
if (ret) {
dev_err(rk630->dev, "Failed to write RTC_INT0_EN: %d\n", ret);
return ret;
}
return ret;
}
static int rk630_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rk630_rtc *rk630_rtc = dev_get_drvdata(dev);
struct rk630 *rk630 = rk630_rtc->rk630;
u32 alrm_data[NUM_ALARM_REGS];
int yearl, yearh;
int ret;
ret = rk630_rtc_stop_alarm(rk630_rtc);
if (ret) {
dev_err(dev, "Failed to stop alarm: %d\n", ret);
return ret;
}
dev_dbg(dev, "alrm set RTC date/time %4d-%02d-%02d(%d) %02d:%02d:%02d\n",
1900 + alrm->time.tm_year, alrm->time.tm_mon + 1,
alrm->time.tm_mday, alrm->time.tm_wday, alrm->time.tm_hour,
alrm->time.tm_min, alrm->time.tm_sec);
alrm_data[0] = bin2bcd(alrm->time.tm_sec);
alrm_data[1] = bin2bcd(alrm->time.tm_min);
alrm_data[2] = bin2bcd(alrm->time.tm_hour);
alrm_data[3] = bin2bcd(alrm->time.tm_mday);
alrm_data[4] = bin2bcd(alrm->time.tm_mon + 1);
if (alrm->time.tm_year > 199) {
yearh = (alrm->time.tm_year - 100) / 100;
yearl = alrm->time.tm_year - 100 - yearh * 100;
} else {
yearh = 0;
yearl = alrm->time.tm_year - 100 - yearh * 100;
}
alrm_data[5] = bin2bcd(yearl);
alrm_data[6] = bin2bcd(yearh);
ret = regmap_bulk_write(rk630->rtc,
RTC_ALARM_SECONDS,
alrm_data, NUM_ALARM_REGS);
if (ret) {
dev_err(dev, "Failed to bulk write: %d\n", ret);
return ret;
}
if (alrm->enabled) {
ret = rk630_rtc_start_alarm(rk630_rtc);
if (ret) {
dev_err(dev, "Failed to start alarm: %d\n", ret);
return ret;
}
}
return 0;
}
static int rk630_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct rk630_rtc *rk630_rtc = dev_get_drvdata(dev);
if (enabled)
return rk630_rtc_start_alarm(rk630_rtc);
return rk630_rtc_stop_alarm(rk630_rtc);
}
/*
* We will just handle setting the frequency and make use the framework for
* reading the periodic interrupts.
*
*/
static irqreturn_t rk630_alarm_irq(int irq, void *data)
{
struct rk630_rtc *rk630_rtc = data;
struct rk630 *rk630 = rk630_rtc->rk630;
int ret, status;
ret = regmap_read(rk630->rtc, RTC_STATUS0, &status);
if (ret) {
pr_err("Failed to read RTC INT REG: %d\n", ret);
return ret;
}
ret = regmap_write(rk630->rtc, RTC_STATUS0, status);
if (ret) {
pr_err("%s:Failed to update RTC status: %d\n", __func__, ret);
return ret;
}
ret = regmap_write(rk630->rtc, RTC_STATUS0, 0x0);
if (ret) {
pr_err("%s:Failed to update RTC status: %d\n", __func__, ret);
return ret;
}
if (status & ALARM_INT_STATUS) {
pr_info("Alarm by: %s\n", __func__);
rtc_update_irq(rk630_rtc->rtc, 1, RTC_IRQF | RTC_AF);
}
return IRQ_HANDLED;
}
static const struct rtc_class_ops rk630_rtc_ops = {
.read_time = rk630_rtc_readtime,
.set_time = rk630_rtc_set_time,
.read_alarm = rk630_rtc_readalarm,
.set_alarm = rk630_rtc_setalarm,
.alarm_irq_enable = rk630_rtc_alarm_irq_enable,
};
/*
* Due to the analog generator 32k clock affected by
* temperature, voltage, clock precision need test
* with the environment change. In rtc test,
* use 24M clock as reference clock to measure the 32k clock.
* Before start test 32k clock, we should enable clk32k test(0x80),
* and configure test length, when rtc test done(0x84[2]),
* latch the 24M clock domain counter,
* and read out the counter from rtc_test
* registers(0x8c~0x98) via apb bus.
* In RTC digital design, we set three level compensation,
* the compensation value due to the
* RTC 32k clock test result, and if we need compensation,
* we need configure the compensation enable bit.
* Comp every hour, compensation at last minute every hour,
* and support add time and sub time by the MSB bit.
* Comp every day, compensation at last minute in last hour every day,
* and support add time and sub time by the MSB bit.
* Comp every month, compensation at last minute
* in last hour in last day every month,
* and support add time and sub time by the MSB bit.
*/
static int rk630_rtc_compensation(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rk630_rtc *rk630_rtc = dev_get_drvdata(&pdev->dev);
struct rk630 *rk630 = rk630_rtc->rk630;
u64 camp;
u32 count[4], counts, g_ref, tcamp;
int ret, done = 0, trim_dir, c_hour,
c_day, c_det_day, c_mon, c_det_mon;
ret = regmap_write(rk630->rtc, RTC_CLK32K_TEST, CLK32K_TEST_EN);
if (ret) {
dev_err(dev,
"%s:Failed to update RTC CLK32K TEST: %d\n",
__func__, ret);
return ret;
}
ret = regmap_write(rk630->rtc, RTC_TEST_LEN, CLK32K_TEST_LEN);
if (ret) {
dev_err(dev,
"%s:Failed to update RTC CLK32K TEST LEN: %d\n",
__func__, ret);
return ret;
}
ret = regmap_write(rk630->rtc, RTC_TEST_ST, CLK32K_TEST_START);
if (ret) {
dev_err(dev,
"%s:Failed to update RTC CLK32K TEST STATUS : %d\n",
__func__, ret);
return ret;
}
while (!done) {
ret = regmap_read(rk630->rtc, RTC_TEST_ST, &done);
if (ret) {
dev_err(dev,
"Failed to read RTC CLK32K TEST STATUS: %d\n",
ret);
return ret;
}
done = (done & CLK32K_TEST_DONE) >> 2;
udelay(1);
}
ret = regmap_bulk_read(rk630->rtc, RTC_CNT_0, count, 4);
if (ret) {
dev_err(dev, "Failed to read RTC count REG: %d\n", ret);
return ret;
}
counts = count[0] | (count[1] << 8) |
(count[2] << 16) | (count[3] << 24);
g_ref = CLK32K_TEST_REF_CLK * (CLK32K_TEST_LEN + 1);
if (counts > g_ref) {
trim_dir = 0;
camp = 36ULL * (32768 * (counts - g_ref));
do_div(camp, (g_ref / 100));
} else {
trim_dir = CLK32K_COMP_DIR_ADD;
camp = 36ULL * (32768 * (g_ref - counts));
do_div(camp, (g_ref / 100));
}
tcamp = (u32)camp;
c_hour = DIV_ROUND_CLOSEST(tcamp, 32768);
c_day = DIV_ROUND_CLOSEST(24 * tcamp, 32768);
c_mon = DIV_ROUND_CLOSEST(30 * 24 * tcamp, 32768);
if (c_hour > 1)
regmap_write(rk630->rtc, RTC_COMP_H, bin2bcd((c_hour - 1)) | trim_dir);
else
regmap_write(rk630->rtc, RTC_COMP_H, CLK32K_NO_COMP);
if (c_day > c_hour * 23) {
c_det_day = c_day - c_hour * 23;
trim_dir = CLK32K_COMP_DIR_ADD;
} else {
c_det_day = c_hour * 24 - c_day;
trim_dir = 0;
}
if (c_det_day > 1)
regmap_write(rk630->rtc, RTC_COMP_D,
bin2bcd((c_det_day - 1)) | trim_dir);
else
regmap_write(rk630->rtc, RTC_COMP_D, CLK32K_NO_COMP);
if (c_mon > (29 * c_day + 23 * c_hour)) {
c_det_mon = c_mon - 29 * c_day - 23 * c_hour;
trim_dir = CLK32K_COMP_DIR_ADD;
} else {
c_det_mon = 29 * c_day + 23 * c_hour - c_mon;
trim_dir = 0;
}
if (c_det_mon)
regmap_write(rk630->rtc, RTC_COMP_M,
bin2bcd((c_det_mon - 1)) | trim_dir);
else
regmap_write(rk630->rtc, RTC_COMP_M, CLK32K_NO_COMP);
ret = regmap_read(rk630->rtc, RTC_CTRL, &done);
if (ret) {
dev_err(dev, "Failed to read RTC_CTRL: %d\n",
ret);
return ret;
}
ret = regmap_update_bits(rk630->rtc, RTC_CTRL,
CLK32K_COMP_EN,
CLK32K_COMP_EN);
if (ret) {
dev_err(dev,
"%s:Failed to update RTC CTRL : %d\n", __func__, ret);
return ret;
}
return 0;
}
/* Enable the alarm if it should be enabled (in case it was disabled to
* prevent use as a wake source).
*/
#ifdef CONFIG_PM_SLEEP
/* Turn off the alarm if it should not be a wake source. */
static int rk630_rtc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rk630_rtc *rk630_rtc = dev_get_drvdata(&pdev->dev);
if (device_may_wakeup(dev))
enable_irq_wake(rk630_rtc->irq);
regmap_write(rk630_rtc->rk630->grf,
PLUMAGE_GRF_SOC_CON0,
RTC_CLAMP_EN(0));
return 0;
}
/* Enable the alarm if it should be enabled (in case it was disabled to
* prevent use as a wake source).
*/
static int rk630_rtc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rk630_rtc *rk630_rtc = dev_get_drvdata(&pdev->dev);
if (device_may_wakeup(dev))
disable_irq_wake(rk630_rtc->irq);
regmap_write(rk630_rtc->rk630->grf,
PLUMAGE_GRF_SOC_CON0,
RTC_CLAMP_EN(1));
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(rk630_rtc_pm_ops, rk630_rtc_suspend, rk630_rtc_resume);
static int rk630_rtc_probe(struct platform_device *pdev)
{
struct rk630 *rk630 = dev_get_drvdata(pdev->dev.parent);
struct rk630_rtc *rk630_rtc;
int ret;
struct rtc_time tm_read, tm = {
.tm_wday = 0,
.tm_year = 121,
.tm_mon = 0,
.tm_mday = 1,
.tm_hour = 12,
.tm_min = 0,
.tm_sec = 0,
};
rk630_rtc = devm_kzalloc(&pdev->dev, sizeof(*rk630_rtc), GFP_KERNEL);
if (!rk630_rtc)
return -ENOMEM;
platform_set_drvdata(pdev, rk630_rtc);
rk630_rtc->rk630 = rk630;
regmap_write(rk630->grf, PLUMAGE_GRF_SOC_CON0, RTC_CLAMP_EN(1));
/* setting d2a_lp_xo_start_mir */
regmap_write(rk630->rtc, RTC_XO_TRIM0, RTC_XO_START_MIR);
regmap_write(rk630->rtc, RTC_ANALOG_TEST, RTC_VREF_INIT);
rk630_rtc_compensation(&pdev->dev);
/* start rtc running by default, and use shadowed timer. */
ret = regmap_update_bits(rk630->rtc, RTC_CTRL,
RTC_CTRL_REG_RTC_READSEL_M |
RTC_CTRL_REG_START_RTC,
RTC_CTRL_REG_RTC_READSEL_M |
RTC_CTRL_REG_START_RTC);
if (ret) {
dev_err(&pdev->dev,
"Failed to write RTC control: %d\n", ret);
return ret;
}
ret = regmap_write(rk630->rtc, RTC_STATUS0,
RTC_STATUS_MASK);
if (ret) {
dev_err(&pdev->dev,
"Failed to write RTC status0: %d\n", ret);
return ret;
}
ret = regmap_write(rk630->rtc, RTC_STATUS0, 0);
if (ret) {
dev_err(&pdev->dev,
"Failed to write RTC status0: %d\n", ret);
return ret;
}
device_init_wakeup(&pdev->dev, 1);
rk630_rtc_readtime(&pdev->dev, &tm_read);
if (rtc_valid_tm(&tm_read) != 0)
rk630_rtc_set_time(&pdev->dev, &tm);
rk630_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(rk630_rtc->rtc))
return PTR_ERR(rk630_rtc->rtc);
rk630_rtc->rtc->ops = &rk630_rtc_ops;
/* request alarm irq of rk630 */
ret = devm_request_threaded_irq(&pdev->dev, rk630->irq, NULL,
rk630_alarm_irq,
IRQF_TRIGGER_LOW | IRQF_ONESHOT |
IRQF_SHARED,
"RTC alarm", rk630_rtc);
if (ret) {
dev_err(&pdev->dev, "Failed to request alarm IRQ %d: %d\n",
rk630_rtc->irq, ret);
return ret;
}
return rtc_register_device(rk630_rtc->rtc);
}
static struct platform_driver rk630_rtc_driver = {
.probe = rk630_rtc_probe,
.driver = {
.name = "rk630-rtc",
.pm = &rk630_rtc_pm_ops,
},
};
module_platform_driver(rk630_rtc_driver);
MODULE_DESCRIPTION("RTC driver for the rk630");
MODULE_AUTHOR("Zhang Qing <zhangqing@rock-chips.com>");
MODULE_LICENSE("GPL");

View file

@ -17,149 +17,206 @@
#define HIWORD_MASK(h, l) ((GENMASK((h), (l)) << 16) | GENMASK((h), (l)))
#define HIWORD_UPDATE(v, h, l) ((((v) << (l)) & GENMASK((h), (l))) | (GENMASK((h), (l)) << 16))
#define GRF_REG(x) ((x) + 0x20000)
#define PLUMAGE_GRF_GPIO0A_IOMUX GRF_REG(0x0000)
#define GPIO0A0_SEL_MASK HIWORD_MASK(1, 0)
#define GPIO0A0_SEL(x) HIWORD_UPDATE(x, 1, 0)
#define GPIO0A1_SEL_MASK HIWORD_MASK(3, 2)
#define GPIO0A1_SEL(x) HIWORD_UPDATE(x, 3, 2)
#define GPIO0A2_SEL_MASK HIWORD_MASK(5, 4)
#define GPIO0A2_SEL(x) HIWORD_UPDATE(x, 5, 4)
#define GPIO0A3_SEL_MASK HIWORD_MASK(7, 6)
#define GPIO0A3_SEL(x) HIWORD_UPDATE(x, 7, 6)
#define GPIO0A4_SEL_MASK HIWORD_MASK(9, 8)
#define GPIO0A4_SEL(x) HIWORD_UPDATE(x, 9, 8)
#define GPIO0A5_SEL_MASK HIWORD_MASK(11, 10)
#define GPIO0A5_SEL(x) HIWORD_UPDATE(x, 11, 10)
#define GPIO0A6_SEL_MASK HIWORD_MASK(13, 12)
#define GPIO0A6_SEL(x) HIWORD_UPDATE(x, 13, 12)
#define GPIO0A7_SEL_MASK HIWORD_MASK(15, 14)
#define GPIO0A7_SEL(x) HIWORD_UPDATE(x, 15, 14)
#define PLUMAGE_GRF_GPIO0B_IOMUX GRF_REG(0x0008)
#define GPIO0B0_SEL_MASK HIWORD_MASK(1, 0)
#define GPIO0B0_SEL(x) HIWORD_UPDATE(x, 1, 0)
#define PLUMAGE_GRF_GPIO0C_IOMUX GRF_REG(0x0010)
#define PLUMAGE_GRF_GPIO0D_IOMUX GRF_REG(0x0018)
#define PLUMAGE_GRF_GPIO1A_IOMUX GRF_REG(0x0020)
#define PLUMAGE_GRF_GPIO1B_IOMUX GRF_REG(0x0028)
#define PLUMAGE_GRF_GPIO0A_P GRF_REG(0x0080)
#define PLUMAGE_GRF_GPIO0B_P GRF_REG(0x0084)
#define PLUMAGE_GRF_GPIO0C_P GRF_REG(0x0088)
#define PLUMAGE_GRF_GPIO0D_P GRF_REG(0x008C)
#define PLUMAGE_GRF_GPIO1A_P GRF_REG(0x0090)
#define PLUMAGE_GRF_GPIO1B_P GRF_REG(0x0094)
#define PLUMAGE_GRF_GPIO1B_SR GRF_REG(0x00D4)
#define PLUMAGE_GRF_GPIO1B_E GRF_REG(0x0154)
#define PLUMAGE_GRF_SOC_CON0 GRF_REG(0x0400)
#define SW_TVE_DCLK_POL_MASK HIWORD_MASK(4, 4)
#define SW_TVE_DCLK_POL(x) HIWORD_UPDATE(x, 4, 4)
#define SW_TVE_DCLK_EN_MASK HIWORD_MASK(3, 3)
#define SW_TVE_DCLK_EN(x) HIWORD_UPDATE(x, 3, 3)
#define SW_DCLK_UPSAMPLE_EN_MASK HIWORD_MASK(2, 2)
#define SW_DCLK_UPSAMPLE_EN(x) HIWORD_UPDATE(x, 2, 2)
#define SW_TVE_MODE_MASK HIWORD_MASK(1, 1)
#define SW_TVE_MODE(x) HIWORD_UPDATE(x, 1, 1)
#define SW_TVE_EN_MASK HIWORD_MASK(0, 0)
#define SW_TVE_EN(x) HIWORD_UPDATE(x, 0, 0)
#define PLUMAGE_GRF_SOC_CON1 GRF_REG(0x0404)
#define PLUMAGE_GRF_SOC_CON2 GRF_REG(0x0408)
#define PLUMAGE_GRF_SOC_CON3 GRF_REG(0x040C)
#define VDAC_ENVBG_MASK HIWORD_MASK(12, 12)
#define VDAC_ENVBG(x) HIWORD_UPDATE(x, 12, 12)
#define VDAC_ENSC0_MASK HIWORD_MASK(11, 11)
#define VDAC_ENSC0(x) HIWORD_UPDATE(x, 11, 11)
#define VDAC_ENEXTREF_MASK HIWORD_MASK(10, 10)
#define VDAC_ENEXTREF(x) HIWORD_UPDATE(x, 10, 10)
#define VDAC_ENDAC0_MASK HIWORD_MASK(9, 9)
#define VDAC_ENDAC0(x) HIWORD_UPDATE(x, 9, 9)
#define VDAC_ENCTR2_MASK HIWORD_MASK(8, 8)
#define VDAC_ENCTR2(x) HIWORD_UPDATE(x, 8, 8)
#define VDAC_ENCTR1_MASK HIWORD_MASK(7, 7)
#define VDAC_ENCTR1(x) HIWORD_UPDATE(x, 7, 7)
#define VDAC_ENCTR0_MASK HIWORD_MASK(6, 6)
#define VDAC_ENCTR0(x) HIWORD_UPDATE(x, 6, 6)
#define VDAC_GAIN_MASK GENMASK(x, 5, 0)
#define VDAC_GAIN(x) HIWORD_UPDATE(x, 5, 0)
#define PLUMAGE_GRF_SOC_CON4 GRF_REG(0x0410)
#define PLUMAGE_GRF_SOC_STATUS GRF_REG(0x0480)
#define PLUMAGE_GRF_GPIO0_REN0 GRF_REG(0x0500)
#define PLUMAGE_GRF_GPIO0_REN1 GRF_REG(0x0504)
#define PLUMAGE_GRF_GPIO1_REN0 GRF_REG(0x0508)
#define GRF_MAX_REGISTER PLUMAGE_GRF_GPIO1_REN0
#define RTC_REG(x) ((x) + 0x60000)
#define RTC_SET_SECONDS RTC_REG(0x0)
#define RTC_SET_MINUTES RTC_REG(0x4)
#define RTC_SET_HOURS RTC_REG(0x8)
#define RTC_SET_DAYS RTC_REG(0xc)
#define RTC_SET_MONTHS RTC_REG(0x10)
#define RTC_SET_YEARL RTC_REG(0x14)
#define RTC_SET_YEARH RTC_REG(0x18)
#define RTC_SET_WEEKS RTC_REG(0x1c)
#define RTC_ALARM_SECONDS RTC_REG(0x20)
#define RTC_ALARM_MINUTES RTC_REG(0x24)
#define RTC_ALARM_HOURS RTC_REG(0x28)
#define RTC_ALARM_DAYS RTC_REG(0x2c)
#define RTC_ALARM_MONTHS RTC_REG(0x30)
#define RTC_ALARM_YEARL RTC_REG(0x34)
#define RTC_ALARM_YEARH RTC_REG(0x38)
#define RTC_CTRL RTC_REG(0x3C)
#define RTC_STATUS0 RTC_REG(0x40)
#define RTC_STATUS1 RTC_REG(0x44)
#define RTC_INT0_EN RTC_REG(0x48)
#define RTC_INT1_EN RTC_REG(0x4c)
#define RTC_MSEC_CTRL RTC_REG(0x50)
#define RTC_MSEC_CNT RTC_REG(0x54)
#define RTC_COMP_H RTC_REG(0x58)
#define RTC_COMP_D RTC_REG(0x5c)
#define RTC_COMP_M RTC_REG(0x60)
#define RTC_ANALOG_CTRL RTC_REG(0x64)
#define RTC_ANALOG_TEST RTC_REG(0x68)
#define RTC_LDO_CTRL RTC_REG(0x6c)
#define RTC_XO_TRIM0 RTC_REG(0x70)
#define RTC_XO_TRIM1 RTC_REG(0x74)
#define RTC_VPTAT_TRIM RTC_REG(0x78)
#define RTC_ANALOG_EN RTC_REG(0x7c)
#define RTC_CLK32K_TEST RTC_REG(0x80)
#define RTC_TEST_ST RTC_REG(0x84)
#define RTC_TEST_LEN RTC_REG(0x88)
#define RTC_CNT_0 RTC_REG(0x8c)
#define RTC_CNT_1 RTC_REG(0x90)
#define RTC_CNT_2 RTC_REG(0x94)
#define RTC_CNT_3 RTC_REG(0x98)
#define RTC_MAX_REGISTER RTC_CNT_3
#define CRU_REG(x) ((x) + 0x140000)
#define CRU_SPLL_CON0 CRU_REG(0x0000)
#define POSTDIV1_MASK HIWORD_MASK(14, 12)
#define POSTDIV1(x) HIWORD_UPDATE(x, 14, 12)
#define FBDIV_MASK HIWORD_MASK(14, 12)
#define FBDIV(x) HIWORD_UPDATE(x, 14, 12)
#define CRU_SPLL_CON1 CRU_REG(0x0004)
#define PLLPD0_MASK HIWORD_MASK(13, 13)
#define PLLPD0(x) HIWORD_UPDATE(x, 13, 13)
#define PLL_LOCK BIT(10)
#define POSTDIV2_MASK HIWORD_MASK(8, 6)
#define POSTDIV2(x) HIWORD_UPDATE(x, 8, 6)
#define REFDIV_MASK HIWORD_MASK(5, 0)
#define REFDIV(x) HIWORD_UPDATE(x, 5, 0)
#define CRU_SPLL_CON2 CRU_REG(0x0008)
#define CRU_MODE_CON CRU_REG(0x0020)
#define CLK_SPLL_MODE_MASK HIWORD_MASK(2, 0)
#define CLK_SPLL_MODE(x) HIWORD_UPDATE(x, 2, 0)
#define CRU_CLKSEL_CON0 CRU_REG(0x0030)
#define CRU_CLKSEL_CON1 CRU_REG(0x0034)
#define DCLK_CVBS_4X_DIV_CON_MASK HIWORD_MASK(12, 8)
#define DCLK_CVBS_4X_DIV_CON(x) HIWORD_UPDATE(x, 12, 8)
#define CRU_CLKSEL_CON2 CRU_REG(0x0038)
#define CRU_CLKSEL_CON3 CRU_REG(0x003c)
#define CRU_GATE_CON0 CRU_REG(0x0040)
#define CRU_SOFTRST_CON0 CRU_REG(0x0050)
#define DRESETN_CVBS_1X_MASK HIWORD_MASK(10, 10)
#define DRESETN_CVBS_1X(x) HIWORD_UPDATE(x, 10, 10)
#define DRESETN_CVBS_4X_MASK HIWORD_MASK(9, 9)
#define DRESETN_CVBS_4X(x) HIWORD_UPDATE(x, 9, 9)
#define PRESETN_CVBS_MASK HIWORD_MASK(8, 8)
#define PRESETN_CVBS(x) HIWORD_UPDATE(x, 8, 8)
#define PRESETN_GRF_MASK HIWORD_MASK(3, 3)
#define PRESETN_GRF(x) HIWORD_UPDATE(x, 3, 3)
#define CRU_MAX_REGISTER CRU_SOFTRST_CON0
#define GRF_REG(x) ((x) + 0x20000)
#define PLUMAGE_GRF_GPIO0A_IOMUX GRF_REG(0x0000)
#define GPIO0A0_SEL_MASK HIWORD_MASK(1, 0)
#define GPIO0A0_SEL(x) HIWORD_UPDATE(x, 1, 0)
#define GPIO0A1_SEL_MASK HIWORD_MASK(3, 2)
#define GPIO0A1_SEL(x) HIWORD_UPDATE(x, 3, 2)
#define GPIO0A2_SEL_MASK HIWORD_MASK(5, 4)
#define GPIO0A2_SEL(x) HIWORD_UPDATE(x, 5, 4)
#define GPIO0A3_SEL_MASK HIWORD_MASK(7, 6)
#define GPIO0A3_SEL(x) HIWORD_UPDATE(x, 7, 6)
#define GPIO0A4_SEL_MASK HIWORD_MASK(9, 8)
#define GPIO0A4_SEL(x) HIWORD_UPDATE(x, 9, 8)
#define GPIO0A5_SEL_MASK HIWORD_MASK(11, 10)
#define GPIO0A5_SEL(x) HIWORD_UPDATE(x, 11, 10)
#define GPIO0A6_SEL_MASK HIWORD_MASK(13, 12)
#define GPIO0A6_SEL(x) HIWORD_UPDATE(x, 13, 12)
#define GPIO0A7_SEL_MASK HIWORD_MASK(15, 14)
#define GPIO0A7_SEL(x) HIWORD_UPDATE(x, 15, 14)
#define PLUMAGE_GRF_GPIO0B_IOMUX GRF_REG(0x0008)
#define GPIO0B0_SEL_MASK HIWORD_MASK(1, 0)
#define GPIO0B0_SEL(x) HIWORD_UPDATE(x, 1, 0)
#define PLUMAGE_GRF_GPIO0C_IOMUX GRF_REG(0x0010)
#define PLUMAGE_GRF_GPIO0D_IOMUX GRF_REG(0x0018)
#define PLUMAGE_GRF_GPIO1A_IOMUX GRF_REG(0x0020)
#define PLUMAGE_GRF_GPIO1B_IOMUX GRF_REG(0x0028)
#define PLUMAGE_GRF_GPIO0A_P GRF_REG(0x0080)
#define PLUMAGE_GRF_GPIO0B_P GRF_REG(0x0084)
#define PLUMAGE_GRF_GPIO0C_P GRF_REG(0x0088)
#define PLUMAGE_GRF_GPIO0D_P GRF_REG(0x008C)
#define PLUMAGE_GRF_GPIO1A_P GRF_REG(0x0090)
#define PLUMAGE_GRF_GPIO1B_P GRF_REG(0x0094)
#define PLUMAGE_GRF_GPIO1B_SR GRF_REG(0x00D4)
#define PLUMAGE_GRF_GPIO1B_E GRF_REG(0x0154)
#define PLUMAGE_GRF_SOC_CON0 GRF_REG(0x0400)
#define RTC_CLAMP_EN_MASK HIWORD_MASK(13, 13)
#define RTC_CLAMP_EN(x) HIWORD_UPDATE(x, 13, 13)
#define SW_TVE_DCLK_POL_MASK HIWORD_MASK(4, 4)
#define SW_TVE_DCLK_POL(x) HIWORD_UPDATE(x, 4, 4)
#define SW_TVE_DCLK_POL_MASK HIWORD_MASK(4, 4)
#define SW_TVE_DCLK_POL(x) HIWORD_UPDATE(x, 4, 4)
#define SW_TVE_DCLK_EN_MASK HIWORD_MASK(3, 3)
#define SW_TVE_DCLK_EN(x) HIWORD_UPDATE(x, 3, 3)
#define SW_DCLK_UPSAMPLE_EN_MASK HIWORD_MASK(2, 2)
#define SW_DCLK_UPSAMPLE_EN(x) HIWORD_UPDATE(x, 2, 2)
#define SW_TVE_MODE_MASK HIWORD_MASK(1, 1)
#define SW_TVE_MODE(x) HIWORD_UPDATE(x, 1, 1)
#define SW_TVE_EN_MASK HIWORD_MASK(0, 0)
#define SW_TVE_EN(x) HIWORD_UPDATE(x, 0, 0)
#define PLUMAGE_GRF_SOC_CON1 GRF_REG(0x0404)
#define PLUMAGE_GRF_SOC_CON2 GRF_REG(0x0408)
#define PLUMAGE_GRF_SOC_CON3 GRF_REG(0x040C)
#define VDAC_ENVBG_MASK HIWORD_MASK(12, 12)
#define VDAC_ENVBG(x) HIWORD_UPDATE(x, 12, 12)
#define VDAC_ENSC0_MASK HIWORD_MASK(11, 11)
#define VDAC_ENSC0(x) HIWORD_UPDATE(x, 11, 11)
#define VDAC_ENEXTREF_MASK HIWORD_MASK(10, 10)
#define VDAC_ENEXTREF(x) HIWORD_UPDATE(x, 10, 10)
#define VDAC_ENDAC0_MASK HIWORD_MASK(9, 9)
#define VDAC_ENDAC0(x) HIWORD_UPDATE(x, 9, 9)
#define VDAC_ENCTR2_MASK HIWORD_MASK(8, 8)
#define VDAC_ENCTR2(x) HIWORD_UPDATE(x, 8, 8)
#define VDAC_ENCTR1_MASK HIWORD_MASK(7, 7)
#define VDAC_ENCTR1(x) HIWORD_UPDATE(x, 7, 7)
#define VDAC_ENCTR0_MASK HIWORD_MASK(6, 6)
#define VDAC_ENCTR0(x) HIWORD_UPDATE(x, 6, 6)
#define VDAC_GAIN_MASK GENMASK(x, 5, 0)
#define VDAC_GAIN(x) HIWORD_UPDATE(x, 5, 0)
#define PLUMAGE_GRF_SOC_CON4 GRF_REG(0x0410)
#define PLUMAGE_GRF_SOC_STATUS GRF_REG(0x0480)
#define PLUMAGE_GRF_GPIO0_REN0 GRF_REG(0x0500)
#define PLUMAGE_GRF_GPIO0_REN1 GRF_REG(0x0504)
#define PLUMAGE_GRF_GPIO1_REN0 GRF_REG(0x0508)
#define PLUMAGE_GRF_RTC_STATUS GRF_REG(0x0610)
#define TVE_REG(x) ((x) + 0x10000)
#define BT656_DECODER_CTRL TVE_REG(0x3D00)
#define BT656_DECODER_CROP TVE_REG(0x3D04)
#define BT656_DECODER_SIZE TVE_REG(0x3D08)
#define BT656_DECODER_HTOTAL_HS_END TVE_REG(0x3D0C)
#define BT656_DECODER_VACT_ST_HACT_ST TVE_REG(0x3D10)
#define BT656_DECODER_VTOTAL_VS_END TVE_REG(0x3D14)
#define BT656_DECODER_VS_ST_END_F1 TVE_REG(0x3D18)
#define BT656_DECODER_DBG_REG TVE_REG(0x3D1C)
#define TVE_MODE_CTRL TVE_REG(0x3E00)
#define TVE_HOR_TIMING1 TVE_REG(0x3E04)
#define TVE_HOR_TIMING2 TVE_REG(0x3E08)
#define TVE_HOR_TIMING3 TVE_REG(0x3E0C)
#define TVE_SUB_CAR_FRQ TVE_REG(0x3E10)
#define TVE_LUMA_FILTER1 TVE_REG(0x3E14)
#define TVE_LUMA_FILTER2 TVE_REG(0x3E18)
#define TVE_LUMA_FILTER3 TVE_REG(0x3E1C)
#define TVE_LUMA_FILTER4 TVE_REG(0x3E20)
#define TVE_LUMA_FILTER5 TVE_REG(0x3E24)
#define TVE_LUMA_FILTER6 TVE_REG(0x3E28)
#define TVE_LUMA_FILTER7 TVE_REG(0x3E2C)
#define TVE_LUMA_FILTER8 TVE_REG(0x3E30)
#define TVE_IMAGE_POSITION TVE_REG(0x3E34)
#define TVE_ROUTING TVE_REG(0x3E38)
#define TVE_SYNC_ADJUST TVE_REG(0x3E50)
#define TVE_STATUS TVE_REG(0x3E54)
#define TVE_CTRL TVE_REG(0x3E68)
#define TVE_INTR_STATUS TVE_REG(0x3E6C)
#define TVE_INTR_EN TVE_REG(0x3E70)
#define TVE_INTR_CLR TVE_REG(0x3E74)
#define TVE_COLOR_BUSRT_SAT TVE_REG(0x3E78)
#define TVE_CHROMA_BANDWIDTH TVE_REG(0x3E8C)
#define TVE_BRIGHTNESS_CONTRAST TVE_REG(0x3E90)
#define TVE_ID TVE_REG(0x3E98)
#define TVE_REVISION TVE_REG(0x3E9C)
#define TVE_CLAMP TVE_REG(0x3EA0)
#define TVE_MAX_REGISTER TVE_CLAMP
#ifndef GRF_MAX_REGISTER
#define GRF_MAX_REGISTER PLUMAGE_GRF_RTC_STATUS
#endif
#define CRU_REG(x) ((x) + 0x140000)
#define CRU_SPLL_CON0 CRU_REG(0x0000)
#define POSTDIV1_MASK HIWORD_MASK(14, 12)
#define POSTDIV1(x) HIWORD_UPDATE(x, 14, 12)
#define FBDIV_MASK HIWORD_MASK(14, 12)
#define FBDIV(x) HIWORD_UPDATE(x, 14, 12)
#define CRU_SPLL_CON1 CRU_REG(0x0004)
#define PLLPD0_MASK HIWORD_MASK(13, 13)
#define PLLPD0(x) HIWORD_UPDATE(x, 13, 13)
#define PLL_LOCK BIT(10)
#define POSTDIV2_MASK HIWORD_MASK(8, 6)
#define POSTDIV2(x) HIWORD_UPDATE(x, 8, 6)
#define REFDIV_MASK HIWORD_MASK(5, 0)
#define REFDIV(x) HIWORD_UPDATE(x, 5, 0)
#define CRU_SPLL_CON2 CRU_REG(0x0008)
#define CRU_MODE_CON CRU_REG(0x0020)
#define CLK_SPLL_MODE_MASK HIWORD_MASK(2, 0)
#define CLK_SPLL_MODE(x) HIWORD_UPDATE(x, 2, 0)
#define CRU_CLKSEL_CON0 CRU_REG(0x0030)
#define CRU_CLKSEL_CON1 CRU_REG(0x0034)
#define DCLK_CVBS_4X_DIV_CON_MASK HIWORD_MASK(12, 8)
#define DCLK_CVBS_4X_DIV_CON(x) HIWORD_UPDATE(x, 12, 8)
#define CRU_CLKSEL_CON2 CRU_REG(0x0038)
#define CRU_CLKSEL_CON3 CRU_REG(0x003c)
#define CRU_GATE_CON0 CRU_REG(0x0040)
#define CRU_SOFTRST_CON0 CRU_REG(0x0050)
#define DRESETN_CVBS_1X_MASK HIWORD_MASK(10, 10)
#define DRESETN_CVBS_1X(x) HIWORD_UPDATE(x, 10, 10)
#define DRESETN_CVBS_4X_MASK HIWORD_MASK(9, 9)
#define DRESETN_CVBS_4X(x) HIWORD_UPDATE(x, 9, 9)
#define PRESETN_CVBS_MASK HIWORD_MASK(8, 8)
#define PRESETN_CVBS(x) HIWORD_UPDATE(x, 8, 8)
#define PRESETN_GRF_MASK HIWORD_MASK(3, 3)
#define PRESETN_GRF(x) HIWORD_UPDATE(x, 3, 3)
#define CRU_MAX_REGISTER CRU_SOFTRST_CON0
#define TVE_REG(x) ((x) + 0x10000)
#define BT656_DECODER_CTRL TVE_REG(0x3D00)
#define BT656_DECODER_CROP TVE_REG(0x3D04)
#define BT656_DECODER_SIZE TVE_REG(0x3D08)
#define BT656_DECODER_HTOTAL_HS_END TVE_REG(0x3D0C)
#define BT656_DECODER_VACT_ST_HACT_ST TVE_REG(0x3D10)
#define BT656_DECODER_VTOTAL_VS_END TVE_REG(0x3D14)
#define BT656_DECODER_VS_ST_END_F1 TVE_REG(0x3D18)
#define BT656_DECODER_DBG_REG TVE_REG(0x3D1C)
#define TVE_MODE_CTRL TVE_REG(0x3E00)
#define TVE_HOR_TIMING1 TVE_REG(0x3E04)
#define TVE_HOR_TIMING2 TVE_REG(0x3E08)
#define TVE_HOR_TIMING3 TVE_REG(0x3E0C)
#define TVE_SUB_CAR_FRQ TVE_REG(0x3E10)
#define TVE_LUMA_FILTER1 TVE_REG(0x3E14)
#define TVE_LUMA_FILTER2 TVE_REG(0x3E18)
#define TVE_LUMA_FILTER3 TVE_REG(0x3E1C)
#define TVE_LUMA_FILTER4 TVE_REG(0x3E20)
#define TVE_LUMA_FILTER5 TVE_REG(0x3E24)
#define TVE_LUMA_FILTER6 TVE_REG(0x3E28)
#define TVE_LUMA_FILTER7 TVE_REG(0x3E2C)
#define TVE_LUMA_FILTER8 TVE_REG(0x3E30)
#define TVE_IMAGE_POSITION TVE_REG(0x3E34)
#define TVE_ROUTING TVE_REG(0x3E38)
#define TVE_SYNC_ADJUST TVE_REG(0x3E50)
#define TVE_STATUS TVE_REG(0x3E54)
#define TVE_CTRL TVE_REG(0x3E68)
#define TVE_INTR_STATUS TVE_REG(0x3E6C)
#define TVE_INTR_EN TVE_REG(0x3E70)
#define TVE_INTR_CLR TVE_REG(0x3E74)
#define TVE_COLOR_BUSRT_SAT TVE_REG(0x3E78)
#define TVE_CHROMA_BANDWIDTH TVE_REG(0x3E8C)
#define TVE_BRIGHTNESS_CONTRAST TVE_REG(0x3E90)
#define TVE_ID TVE_REG(0x3E98)
#define TVE_REVISION TVE_REG(0x3E9C)
#define TVE_CLAMP TVE_REG(0x3EA0)
#define TVE_MAX_REGISTER TVE_CLAMP
/* RK630 IRQ Definitions */
#define RK630_IRQ_RTC_ALARM 0
#define RK630_IRQ_SYS_INT 1
#define RK630_IRQ_RTC_ALARM_MSK BIT(7)
#define RK630_IRQ_SYS_MSK BIT(4)
struct rk630 {
struct device *dev;
@ -167,9 +224,14 @@ struct rk630 {
struct regmap *grf;
struct regmap *cru;
struct regmap *tve;
struct regmap *rtc;
struct gpio_desc *reset_gpio;
int irq;
struct regmap_irq_chip_data *irq_data;
const struct regmap_irq_chip *regmap_irq_chip;
};
extern const struct regmap_config rk630_rtc_regmap_config;
extern const struct regmap_config rk630_grf_regmap_config;
extern const struct regmap_config rk630_cru_regmap_config;
extern const struct regmap_config rk630_tve_regmap_config;