 1da177e4c3
			
		
	
	
	1da177e4c3
	
	
	
		
			
			Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
		
			
				
	
	
		
			222 lines
		
	
	
	
		
			7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
	
		
			7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*---------------------------------------------------------------------------+
 | |
|  |  poly_tan.c                                                               |
 | |
|  |                                                                           |
 | |
|  | Compute the tan of a FPU_REG, using a polynomial approximation.           |
 | |
|  |                                                                           |
 | |
|  | Copyright (C) 1992,1993,1994,1997,1999                                    |
 | |
|  |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
 | |
|  |                       Australia.  E-mail   billm@melbpc.org.au            |
 | |
|  |                                                                           |
 | |
|  |                                                                           |
 | |
|  +---------------------------------------------------------------------------*/
 | |
| 
 | |
| #include "exception.h"
 | |
| #include "reg_constant.h"
 | |
| #include "fpu_emu.h"
 | |
| #include "fpu_system.h"
 | |
| #include "control_w.h"
 | |
| #include "poly.h"
 | |
| 
 | |
| 
 | |
| #define	HiPOWERop	3	/* odd poly, positive terms */
 | |
| static const unsigned long long oddplterm[HiPOWERop] =
 | |
| {
 | |
|   0x0000000000000000LL,
 | |
|   0x0051a1cf08fca228LL,
 | |
|   0x0000000071284ff7LL
 | |
| };
 | |
| 
 | |
| #define	HiPOWERon	2	/* odd poly, negative terms */
 | |
| static const unsigned long long oddnegterm[HiPOWERon] =
 | |
| {
 | |
|    0x1291a9a184244e80LL,
 | |
|    0x0000583245819c21LL
 | |
| };
 | |
| 
 | |
| #define	HiPOWERep	2	/* even poly, positive terms */
 | |
| static const unsigned long long evenplterm[HiPOWERep] =
 | |
| {
 | |
|   0x0e848884b539e888LL,
 | |
|   0x00003c7f18b887daLL
 | |
| };
 | |
| 
 | |
| #define	HiPOWERen	2	/* even poly, negative terms */
 | |
| static const unsigned long long evennegterm[HiPOWERen] =
 | |
| {
 | |
|   0xf1f0200fd51569ccLL,
 | |
|   0x003afb46105c4432LL
 | |
| };
 | |
| 
 | |
| static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
 | |
| 
 | |
| 
 | |
| /*--- poly_tan() ------------------------------------------------------------+
 | |
|  |                                                                           |
 | |
|  +---------------------------------------------------------------------------*/
 | |
| void	poly_tan(FPU_REG *st0_ptr)
 | |
| {
 | |
|   long int    		exponent;
 | |
|   int                   invert;
 | |
|   Xsig                  argSq, argSqSq, accumulatoro, accumulatore, accum,
 | |
|                         argSignif, fix_up;
 | |
|   unsigned long         adj;
 | |
| 
 | |
|   exponent = exponent(st0_ptr);
 | |
| 
 | |
| #ifdef PARANOID
 | |
|   if ( signnegative(st0_ptr) )	/* Can't hack a number < 0.0 */
 | |
|     { arith_invalid(0); return; }  /* Need a positive number */
 | |
| #endif /* PARANOID */
 | |
| 
 | |
|   /* Split the problem into two domains, smaller and larger than pi/4 */
 | |
|   if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) )
 | |
|     {
 | |
|       /* The argument is greater than (approx) pi/4 */
 | |
|       invert = 1;
 | |
|       accum.lsw = 0;
 | |
|       XSIG_LL(accum) = significand(st0_ptr);
 | |
|  
 | |
|       if ( exponent == 0 )
 | |
| 	{
 | |
| 	  /* The argument is >= 1.0 */
 | |
| 	  /* Put the binary point at the left. */
 | |
| 	  XSIG_LL(accum) <<= 1;
 | |
| 	}
 | |
|       /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
 | |
|       XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
 | |
|       /* This is a special case which arises due to rounding. */
 | |
|       if ( XSIG_LL(accum) == 0xffffffffffffffffLL )
 | |
| 	{
 | |
| 	  FPU_settag0(TAG_Valid);
 | |
| 	  significand(st0_ptr) = 0x8a51e04daabda360LL;
 | |
| 	  setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative);
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       argSignif.lsw = accum.lsw;
 | |
|       XSIG_LL(argSignif) = XSIG_LL(accum);
 | |
|       exponent = -1 + norm_Xsig(&argSignif);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       invert = 0;
 | |
|       argSignif.lsw = 0;
 | |
|       XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
 | |
|  
 | |
|       if ( exponent < -1 )
 | |
| 	{
 | |
| 	  /* shift the argument right by the required places */
 | |
| 	  if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U )
 | |
| 	    XSIG_LL(accum) ++;	/* round up */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw;
 | |
|   mul_Xsig_Xsig(&argSq, &argSq);
 | |
|   XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw;
 | |
|   mul_Xsig_Xsig(&argSqSq, &argSqSq);
 | |
| 
 | |
|   /* Compute the negative terms for the numerator polynomial */
 | |
|   accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
 | |
|   polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1);
 | |
|   mul_Xsig_Xsig(&accumulatoro, &argSq);
 | |
|   negate_Xsig(&accumulatoro);
 | |
|   /* Add the positive terms */
 | |
|   polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1);
 | |
| 
 | |
|   
 | |
|   /* Compute the positive terms for the denominator polynomial */
 | |
|   accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
 | |
|   polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1);
 | |
|   mul_Xsig_Xsig(&accumulatore, &argSq);
 | |
|   negate_Xsig(&accumulatore);
 | |
|   /* Add the negative terms */
 | |
|   polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1);
 | |
|   /* Multiply by arg^2 */
 | |
|   mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
 | |
|   mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
 | |
|   /* de-normalize and divide by 2 */
 | |
|   shr_Xsig(&accumulatore, -2*(1+exponent) + 1);
 | |
|   negate_Xsig(&accumulatore);      /* This does 1 - accumulator */
 | |
| 
 | |
|   /* Now find the ratio. */
 | |
|   if ( accumulatore.msw == 0 )
 | |
|     {
 | |
|       /* accumulatoro must contain 1.0 here, (actually, 0) but it
 | |
| 	 really doesn't matter what value we use because it will
 | |
| 	 have negligible effect in later calculations
 | |
| 	 */
 | |
|       XSIG_LL(accum) = 0x8000000000000000LL;
 | |
|       accum.lsw = 0;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       div_Xsig(&accumulatoro, &accumulatore, &accum);
 | |
|     }
 | |
| 
 | |
|   /* Multiply by 1/3 * arg^3 */
 | |
|   mul64_Xsig(&accum, &XSIG_LL(argSignif));
 | |
|   mul64_Xsig(&accum, &XSIG_LL(argSignif));
 | |
|   mul64_Xsig(&accum, &XSIG_LL(argSignif));
 | |
|   mul64_Xsig(&accum, &twothirds);
 | |
|   shr_Xsig(&accum, -2*(exponent+1));
 | |
| 
 | |
|   /* tan(arg) = arg + accum */
 | |
|   add_two_Xsig(&accum, &argSignif, &exponent);
 | |
| 
 | |
|   if ( invert )
 | |
|     {
 | |
|       /* We now have the value of tan(pi_2 - arg) where pi_2 is an
 | |
| 	 approximation for pi/2
 | |
| 	 */
 | |
|       /* The next step is to fix the answer to compensate for the
 | |
| 	 error due to the approximation used for pi/2
 | |
| 	 */
 | |
| 
 | |
|       /* This is (approx) delta, the error in our approx for pi/2
 | |
| 	 (see above). It has an exponent of -65
 | |
| 	 */
 | |
|       XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
 | |
|       fix_up.lsw = 0;
 | |
| 
 | |
|       if ( exponent == 0 )
 | |
| 	adj = 0xffffffff;   /* We want approx 1.0 here, but
 | |
| 			       this is close enough. */
 | |
|       else if ( exponent > -30 )
 | |
| 	{
 | |
| 	  adj = accum.msw >> -(exponent+1);      /* tan */
 | |
| 	  adj = mul_32_32(adj, adj);             /* tan^2 */
 | |
| 	}
 | |
|       else
 | |
| 	adj = 0;
 | |
|       adj = mul_32_32(0x898cc517, adj);          /* delta * tan^2 */
 | |
| 
 | |
|       fix_up.msw += adj;
 | |
|       if ( !(fix_up.msw & 0x80000000) )   /* did fix_up overflow ? */
 | |
| 	{
 | |
| 	  /* Yes, we need to add an msb */
 | |
| 	  shr_Xsig(&fix_up, 1);
 | |
| 	  fix_up.msw |= 0x80000000;
 | |
| 	  shr_Xsig(&fix_up, 64 + exponent);
 | |
| 	}
 | |
|       else
 | |
| 	shr_Xsig(&fix_up, 65 + exponent);
 | |
| 
 | |
|       add_two_Xsig(&accum, &fix_up, &exponent);
 | |
| 
 | |
|       /* accum now contains tan(pi/2 - arg).
 | |
| 	 Use tan(arg) = 1.0 / tan(pi/2 - arg)
 | |
| 	 */
 | |
|       accumulatoro.lsw = accumulatoro.midw = 0;
 | |
|       accumulatoro.msw = 0x80000000;
 | |
|       div_Xsig(&accumulatoro, &accum, &accum);
 | |
|       exponent = - exponent - 1;
 | |
|     }
 | |
| 
 | |
|   /* Transfer the result */
 | |
|   round_Xsig(&accum);
 | |
|   FPU_settag0(TAG_Valid);
 | |
|   significand(st0_ptr) = XSIG_LL(accum);
 | |
|   setexponent16(st0_ptr, exponent + EXTENDED_Ebias);  /* Result is positive. */
 | |
| 
 | |
| }
 |