223 lines
		
	
	
	
		
			7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			223 lines
		
	
	
	
		
			7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*---------------------------------------------------------------------------+
 | ||
|  |  |  poly_tan.c                                                               | | ||
|  |  |                                                                           | | ||
|  |  | Compute the tan of a FPU_REG, using a polynomial approximation.           | | ||
|  |  |                                                                           | | ||
|  |  | Copyright (C) 1992,1993,1994,1997,1999                                    | | ||
|  |  |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      | | ||
|  |  |                       Australia.  E-mail   billm@melbpc.org.au            | | ||
|  |  |                                                                           | | ||
|  |  |                                                                           | | ||
|  |  +---------------------------------------------------------------------------*/ | ||
|  | 
 | ||
|  | #include "exception.h"
 | ||
|  | #include "reg_constant.h"
 | ||
|  | #include "fpu_emu.h"
 | ||
|  | #include "fpu_system.h"
 | ||
|  | #include "control_w.h"
 | ||
|  | #include "poly.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define	HiPOWERop	3	/* odd poly, positive terms */
 | ||
|  | static const unsigned long long oddplterm[HiPOWERop] = | ||
|  | { | ||
|  |   0x0000000000000000LL, | ||
|  |   0x0051a1cf08fca228LL, | ||
|  |   0x0000000071284ff7LL | ||
|  | }; | ||
|  | 
 | ||
|  | #define	HiPOWERon	2	/* odd poly, negative terms */
 | ||
|  | static const unsigned long long oddnegterm[HiPOWERon] = | ||
|  | { | ||
|  |    0x1291a9a184244e80LL, | ||
|  |    0x0000583245819c21LL | ||
|  | }; | ||
|  | 
 | ||
|  | #define	HiPOWERep	2	/* even poly, positive terms */
 | ||
|  | static const unsigned long long evenplterm[HiPOWERep] = | ||
|  | { | ||
|  |   0x0e848884b539e888LL, | ||
|  |   0x00003c7f18b887daLL | ||
|  | }; | ||
|  | 
 | ||
|  | #define	HiPOWERen	2	/* even poly, negative terms */
 | ||
|  | static const unsigned long long evennegterm[HiPOWERen] = | ||
|  | { | ||
|  |   0xf1f0200fd51569ccLL, | ||
|  |   0x003afb46105c4432LL | ||
|  | }; | ||
|  | 
 | ||
|  | static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL; | ||
|  | 
 | ||
|  | 
 | ||
|  | /*--- poly_tan() ------------------------------------------------------------+
 | ||
|  |  |                                                                           | | ||
|  |  +---------------------------------------------------------------------------*/ | ||
|  | void	poly_tan(FPU_REG *st0_ptr) | ||
|  | { | ||
|  |   long int    		exponent; | ||
|  |   int                   invert; | ||
|  |   Xsig                  argSq, argSqSq, accumulatoro, accumulatore, accum, | ||
|  |                         argSignif, fix_up; | ||
|  |   unsigned long         adj; | ||
|  | 
 | ||
|  |   exponent = exponent(st0_ptr); | ||
|  | 
 | ||
|  | #ifdef PARANOID
 | ||
|  |   if ( signnegative(st0_ptr) )	/* Can't hack a number < 0.0 */ | ||
|  |     { arith_invalid(0); return; }  /* Need a positive number */ | ||
|  | #endif /* PARANOID */
 | ||
|  | 
 | ||
|  |   /* Split the problem into two domains, smaller and larger than pi/4 */ | ||
|  |   if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) ) | ||
|  |     { | ||
|  |       /* The argument is greater than (approx) pi/4 */ | ||
|  |       invert = 1; | ||
|  |       accum.lsw = 0; | ||
|  |       XSIG_LL(accum) = significand(st0_ptr); | ||
|  |   | ||
|  |       if ( exponent == 0 ) | ||
|  | 	{ | ||
|  | 	  /* The argument is >= 1.0 */ | ||
|  | 	  /* Put the binary point at the left. */ | ||
|  | 	  XSIG_LL(accum) <<= 1; | ||
|  | 	} | ||
|  |       /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | ||
|  |       XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum); | ||
|  |       /* This is a special case which arises due to rounding. */ | ||
|  |       if ( XSIG_LL(accum) == 0xffffffffffffffffLL ) | ||
|  | 	{ | ||
|  | 	  FPU_settag0(TAG_Valid); | ||
|  | 	  significand(st0_ptr) = 0x8a51e04daabda360LL; | ||
|  | 	  setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative); | ||
|  | 	  return; | ||
|  | 	} | ||
|  | 
 | ||
|  |       argSignif.lsw = accum.lsw; | ||
|  |       XSIG_LL(argSignif) = XSIG_LL(accum); | ||
|  |       exponent = -1 + norm_Xsig(&argSignif); | ||
|  |     } | ||
|  |   else | ||
|  |     { | ||
|  |       invert = 0; | ||
|  |       argSignif.lsw = 0; | ||
|  |       XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr); | ||
|  |   | ||
|  |       if ( exponent < -1 ) | ||
|  | 	{ | ||
|  | 	  /* shift the argument right by the required places */ | ||
|  | 	  if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U ) | ||
|  | 	    XSIG_LL(accum) ++;	/* round up */ | ||
|  | 	} | ||
|  |     } | ||
|  | 
 | ||
|  |   XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw; | ||
|  |   mul_Xsig_Xsig(&argSq, &argSq); | ||
|  |   XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw; | ||
|  |   mul_Xsig_Xsig(&argSqSq, &argSqSq); | ||
|  | 
 | ||
|  |   /* Compute the negative terms for the numerator polynomial */ | ||
|  |   accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0; | ||
|  |   polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1); | ||
|  |   mul_Xsig_Xsig(&accumulatoro, &argSq); | ||
|  |   negate_Xsig(&accumulatoro); | ||
|  |   /* Add the positive terms */ | ||
|  |   polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1); | ||
|  | 
 | ||
|  |    | ||
|  |   /* Compute the positive terms for the denominator polynomial */ | ||
|  |   accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0; | ||
|  |   polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1); | ||
|  |   mul_Xsig_Xsig(&accumulatore, &argSq); | ||
|  |   negate_Xsig(&accumulatore); | ||
|  |   /* Add the negative terms */ | ||
|  |   polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1); | ||
|  |   /* Multiply by arg^2 */ | ||
|  |   mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); | ||
|  |   mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); | ||
|  |   /* de-normalize and divide by 2 */ | ||
|  |   shr_Xsig(&accumulatore, -2*(1+exponent) + 1); | ||
|  |   negate_Xsig(&accumulatore);      /* This does 1 - accumulator */ | ||
|  | 
 | ||
|  |   /* Now find the ratio. */ | ||
|  |   if ( accumulatore.msw == 0 ) | ||
|  |     { | ||
|  |       /* accumulatoro must contain 1.0 here, (actually, 0) but it
 | ||
|  | 	 really doesn't matter what value we use because it will | ||
|  | 	 have negligible effect in later calculations | ||
|  | 	 */ | ||
|  |       XSIG_LL(accum) = 0x8000000000000000LL; | ||
|  |       accum.lsw = 0; | ||
|  |     } | ||
|  |   else | ||
|  |     { | ||
|  |       div_Xsig(&accumulatoro, &accumulatore, &accum); | ||
|  |     } | ||
|  | 
 | ||
|  |   /* Multiply by 1/3 * arg^3 */ | ||
|  |   mul64_Xsig(&accum, &XSIG_LL(argSignif)); | ||
|  |   mul64_Xsig(&accum, &XSIG_LL(argSignif)); | ||
|  |   mul64_Xsig(&accum, &XSIG_LL(argSignif)); | ||
|  |   mul64_Xsig(&accum, &twothirds); | ||
|  |   shr_Xsig(&accum, -2*(exponent+1)); | ||
|  | 
 | ||
|  |   /* tan(arg) = arg + accum */ | ||
|  |   add_two_Xsig(&accum, &argSignif, &exponent); | ||
|  | 
 | ||
|  |   if ( invert ) | ||
|  |     { | ||
|  |       /* We now have the value of tan(pi_2 - arg) where pi_2 is an
 | ||
|  | 	 approximation for pi/2 | ||
|  | 	 */ | ||
|  |       /* The next step is to fix the answer to compensate for the
 | ||
|  | 	 error due to the approximation used for pi/2 | ||
|  | 	 */ | ||
|  | 
 | ||
|  |       /* This is (approx) delta, the error in our approx for pi/2
 | ||
|  | 	 (see above). It has an exponent of -65 | ||
|  | 	 */ | ||
|  |       XSIG_LL(fix_up) = 0x898cc51701b839a2LL; | ||
|  |       fix_up.lsw = 0; | ||
|  | 
 | ||
|  |       if ( exponent == 0 ) | ||
|  | 	adj = 0xffffffff;   /* We want approx 1.0 here, but
 | ||
|  | 			       this is close enough. */ | ||
|  |       else if ( exponent > -30 ) | ||
|  | 	{ | ||
|  | 	  adj = accum.msw >> -(exponent+1);      /* tan */ | ||
|  | 	  adj = mul_32_32(adj, adj);             /* tan^2 */ | ||
|  | 	} | ||
|  |       else | ||
|  | 	adj = 0; | ||
|  |       adj = mul_32_32(0x898cc517, adj);          /* delta * tan^2 */ | ||
|  | 
 | ||
|  |       fix_up.msw += adj; | ||
|  |       if ( !(fix_up.msw & 0x80000000) )   /* did fix_up overflow ? */ | ||
|  | 	{ | ||
|  | 	  /* Yes, we need to add an msb */ | ||
|  | 	  shr_Xsig(&fix_up, 1); | ||
|  | 	  fix_up.msw |= 0x80000000; | ||
|  | 	  shr_Xsig(&fix_up, 64 + exponent); | ||
|  | 	} | ||
|  |       else | ||
|  | 	shr_Xsig(&fix_up, 65 + exponent); | ||
|  | 
 | ||
|  |       add_two_Xsig(&accum, &fix_up, &exponent); | ||
|  | 
 | ||
|  |       /* accum now contains tan(pi/2 - arg).
 | ||
|  | 	 Use tan(arg) = 1.0 / tan(pi/2 - arg) | ||
|  | 	 */ | ||
|  |       accumulatoro.lsw = accumulatoro.midw = 0; | ||
|  |       accumulatoro.msw = 0x80000000; | ||
|  |       div_Xsig(&accumulatoro, &accum, &accum); | ||
|  |       exponent = - exponent - 1; | ||
|  |     } | ||
|  | 
 | ||
|  |   /* Transfer the result */ | ||
|  |   round_Xsig(&accum); | ||
|  |   FPU_settag0(TAG_Valid); | ||
|  |   significand(st0_ptr) = XSIG_LL(accum); | ||
|  |   setexponent16(st0_ptr, exponent + EXTENDED_Ebias);  /* Result is positive. */ | ||
|  | 
 | ||
|  | } |