398 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			398 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*---------------------------------------------------------------------------+
 | ||
|  |  |  poly_sin.c                                                               | | ||
|  |  |                                                                           | | ||
|  |  |  Computation of an approximation of the sin function and the cosine       | | ||
|  |  |  function by a polynomial.                                                | | ||
|  |  |                                                                           | | ||
|  |  | Copyright (C) 1992,1993,1994,1997,1999                                    | | ||
|  |  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | | ||
|  |  |                  E-mail   billm@melbpc.org.au                             | | ||
|  |  |                                                                           | | ||
|  |  |                                                                           | | ||
|  |  +---------------------------------------------------------------------------*/ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "exception.h"
 | ||
|  | #include "reg_constant.h"
 | ||
|  | #include "fpu_emu.h"
 | ||
|  | #include "fpu_system.h"
 | ||
|  | #include "control_w.h"
 | ||
|  | #include "poly.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define	N_COEFF_P	4
 | ||
|  | #define	N_COEFF_N	4
 | ||
|  | 
 | ||
|  | static const unsigned long long pos_terms_l[N_COEFF_P] = | ||
|  | { | ||
|  |   0xaaaaaaaaaaaaaaabLL, | ||
|  |   0x00d00d00d00cf906LL, | ||
|  |   0x000006b99159a8bbLL, | ||
|  |   0x000000000d7392e6LL | ||
|  | }; | ||
|  | 
 | ||
|  | static const unsigned long long neg_terms_l[N_COEFF_N] = | ||
|  | { | ||
|  |   0x2222222222222167LL, | ||
|  |   0x0002e3bc74aab624LL, | ||
|  |   0x0000000b09229062LL, | ||
|  |   0x00000000000c7973LL | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define	N_COEFF_PH	4
 | ||
|  | #define	N_COEFF_NH	4
 | ||
|  | static const unsigned long long pos_terms_h[N_COEFF_PH] = | ||
|  | { | ||
|  |   0x0000000000000000LL, | ||
|  |   0x05b05b05b05b0406LL, | ||
|  |   0x000049f93edd91a9LL, | ||
|  |   0x00000000c9c9ed62LL | ||
|  | }; | ||
|  | 
 | ||
|  | static const unsigned long long neg_terms_h[N_COEFF_NH] = | ||
|  | { | ||
|  |   0xaaaaaaaaaaaaaa98LL, | ||
|  |   0x001a01a01a019064LL, | ||
|  |   0x0000008f76c68a77LL, | ||
|  |   0x0000000000d58f5eLL | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /*--- poly_sine() -----------------------------------------------------------+
 | ||
|  |  |                                                                           | | ||
|  |  +---------------------------------------------------------------------------*/ | ||
|  | void	poly_sine(FPU_REG *st0_ptr) | ||
|  | { | ||
|  |   int                 exponent, echange; | ||
|  |   Xsig                accumulator, argSqrd, argTo4; | ||
|  |   unsigned long       fix_up, adj; | ||
|  |   unsigned long long  fixed_arg; | ||
|  |   FPU_REG	      result; | ||
|  | 
 | ||
|  |   exponent = exponent(st0_ptr); | ||
|  | 
 | ||
|  |   accumulator.lsw = accumulator.midw = accumulator.msw = 0; | ||
|  | 
 | ||
|  |   /* Split into two ranges, for arguments below and above 1.0 */ | ||
|  |   /* The boundary between upper and lower is approx 0.88309101259 */ | ||
|  |   if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa)) ) | ||
|  |     { | ||
|  |       /* The argument is <= 0.88309101259 */ | ||
|  | 
 | ||
|  |       argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; argSqrd.lsw = 0; | ||
|  |       mul64_Xsig(&argSqrd, &significand(st0_ptr)); | ||
|  |       shr_Xsig(&argSqrd, 2*(-1-exponent)); | ||
|  |       argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; | ||
|  |       argTo4.lsw = argSqrd.lsw; | ||
|  |       mul_Xsig_Xsig(&argTo4, &argTo4); | ||
|  | 
 | ||
|  |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, | ||
|  | 		      N_COEFF_N-1); | ||
|  |       mul_Xsig_Xsig(&accumulator, &argSqrd); | ||
|  |       negate_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, | ||
|  | 		      N_COEFF_P-1); | ||
|  | 
 | ||
|  |       shr_Xsig(&accumulator, 2);    /* Divide by four */ | ||
|  |       accumulator.msw |= 0x80000000;  /* Add 1.0 */ | ||
|  | 
 | ||
|  |       mul64_Xsig(&accumulator, &significand(st0_ptr)); | ||
|  |       mul64_Xsig(&accumulator, &significand(st0_ptr)); | ||
|  |       mul64_Xsig(&accumulator, &significand(st0_ptr)); | ||
|  | 
 | ||
|  |       /* Divide by four, FPU_REG compatible, etc */ | ||
|  |       exponent = 3*exponent; | ||
|  | 
 | ||
|  |       /* The minimum exponent difference is 3 */ | ||
|  |       shr_Xsig(&accumulator, exponent(st0_ptr) - exponent); | ||
|  | 
 | ||
|  |       negate_Xsig(&accumulator); | ||
|  |       XSIG_LL(accumulator) += significand(st0_ptr); | ||
|  | 
 | ||
|  |       echange = round_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       setexponentpos(&result, exponent(st0_ptr) + echange); | ||
|  |     } | ||
|  |   else | ||
|  |     { | ||
|  |       /* The argument is > 0.88309101259 */ | ||
|  |       /* We use sin(st(0)) = cos(pi/2-st(0)) */ | ||
|  | 
 | ||
|  |       fixed_arg = significand(st0_ptr); | ||
|  | 
 | ||
|  |       if ( exponent == 0 ) | ||
|  | 	{ | ||
|  | 	  /* The argument is >= 1.0 */ | ||
|  | 
 | ||
|  | 	  /* Put the binary point at the left. */ | ||
|  | 	  fixed_arg <<= 1; | ||
|  | 	} | ||
|  |       /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | ||
|  |       fixed_arg = 0x921fb54442d18469LL - fixed_arg; | ||
|  |       /* There is a special case which arises due to rounding, to fix here. */ | ||
|  |       if ( fixed_arg == 0xffffffffffffffffLL ) | ||
|  | 	fixed_arg = 0; | ||
|  | 
 | ||
|  |       XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; | ||
|  |       mul64_Xsig(&argSqrd, &fixed_arg); | ||
|  | 
 | ||
|  |       XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw; | ||
|  |       mul_Xsig_Xsig(&argTo4, &argTo4); | ||
|  | 
 | ||
|  |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, | ||
|  | 		      N_COEFF_NH-1); | ||
|  |       mul_Xsig_Xsig(&accumulator, &argSqrd); | ||
|  |       negate_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, | ||
|  | 		      N_COEFF_PH-1); | ||
|  |       negate_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       mul64_Xsig(&accumulator, &fixed_arg); | ||
|  |       mul64_Xsig(&accumulator, &fixed_arg); | ||
|  | 
 | ||
|  |       shr_Xsig(&accumulator, 3); | ||
|  |       negate_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       add_Xsig_Xsig(&accumulator, &argSqrd); | ||
|  | 
 | ||
|  |       shr_Xsig(&accumulator, 1); | ||
|  | 
 | ||
|  |       accumulator.lsw |= 1;  /* A zero accumulator here would cause problems */ | ||
|  |       negate_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       /* The basic computation is complete. Now fix the answer to
 | ||
|  | 	 compensate for the error due to the approximation used for | ||
|  | 	 pi/2 | ||
|  | 	 */ | ||
|  | 
 | ||
|  |       /* This has an exponent of -65 */ | ||
|  |       fix_up = 0x898cc517; | ||
|  |       /* The fix-up needs to be improved for larger args */ | ||
|  |       if ( argSqrd.msw & 0xffc00000 ) | ||
|  | 	{ | ||
|  | 	  /* Get about 32 bit precision in these: */ | ||
|  | 	  fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6; | ||
|  | 	} | ||
|  |       fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg)); | ||
|  | 
 | ||
|  |       adj = accumulator.lsw;    /* temp save */ | ||
|  |       accumulator.lsw -= fix_up; | ||
|  |       if ( accumulator.lsw > adj ) | ||
|  | 	XSIG_LL(accumulator) --; | ||
|  | 
 | ||
|  |       echange = round_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       setexponentpos(&result, echange - 1); | ||
|  |     } | ||
|  | 
 | ||
|  |   significand(&result) = XSIG_LL(accumulator); | ||
|  |   setsign(&result, getsign(st0_ptr)); | ||
|  |   FPU_copy_to_reg0(&result, TAG_Valid); | ||
|  | 
 | ||
|  | #ifdef PARANOID
 | ||
|  |   if ( (exponent(&result) >= 0) | ||
|  |       && (significand(&result) > 0x8000000000000000LL) ) | ||
|  |     { | ||
|  |       EXCEPTION(EX_INTERNAL|0x150); | ||
|  |     } | ||
|  | #endif /* PARANOID */
 | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /*--- poly_cos() ------------------------------------------------------------+
 | ||
|  |  |                                                                           | | ||
|  |  +---------------------------------------------------------------------------*/ | ||
|  | void	poly_cos(FPU_REG *st0_ptr) | ||
|  | { | ||
|  |   FPU_REG	      result; | ||
|  |   long int            exponent, exp2, echange; | ||
|  |   Xsig                accumulator, argSqrd, fix_up, argTo4; | ||
|  |   unsigned long long  fixed_arg; | ||
|  | 
 | ||
|  | #ifdef PARANOID
 | ||
|  |   if ( (exponent(st0_ptr) > 0) | ||
|  |       || ((exponent(st0_ptr) == 0) | ||
|  | 	  && (significand(st0_ptr) > 0xc90fdaa22168c234LL)) ) | ||
|  |     { | ||
|  |       EXCEPTION(EX_Invalid); | ||
|  |       FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | ||
|  |       return; | ||
|  |     } | ||
|  | #endif /* PARANOID */
 | ||
|  | 
 | ||
|  |   exponent = exponent(st0_ptr); | ||
|  | 
 | ||
|  |   accumulator.lsw = accumulator.midw = accumulator.msw = 0; | ||
|  | 
 | ||
|  |   if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54)) ) | ||
|  |     { | ||
|  |       /* arg is < 0.687705 */ | ||
|  | 
 | ||
|  |       argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; | ||
|  |       argSqrd.lsw = 0; | ||
|  |       mul64_Xsig(&argSqrd, &significand(st0_ptr)); | ||
|  | 
 | ||
|  |       if ( exponent < -1 ) | ||
|  | 	{ | ||
|  | 	  /* shift the argument right by the required places */ | ||
|  | 	  shr_Xsig(&argSqrd, 2*(-1-exponent)); | ||
|  | 	} | ||
|  | 
 | ||
|  |       argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; | ||
|  |       argTo4.lsw = argSqrd.lsw; | ||
|  |       mul_Xsig_Xsig(&argTo4, &argTo4); | ||
|  | 
 | ||
|  |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, | ||
|  | 		      N_COEFF_NH-1); | ||
|  |       mul_Xsig_Xsig(&accumulator, &argSqrd); | ||
|  |       negate_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, | ||
|  | 		      N_COEFF_PH-1); | ||
|  |       negate_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       mul64_Xsig(&accumulator, &significand(st0_ptr)); | ||
|  |       mul64_Xsig(&accumulator, &significand(st0_ptr)); | ||
|  |       shr_Xsig(&accumulator, -2*(1+exponent)); | ||
|  | 
 | ||
|  |       shr_Xsig(&accumulator, 3); | ||
|  |       negate_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       add_Xsig_Xsig(&accumulator, &argSqrd); | ||
|  | 
 | ||
|  |       shr_Xsig(&accumulator, 1); | ||
|  | 
 | ||
|  |       /* It doesn't matter if accumulator is all zero here, the
 | ||
|  | 	 following code will work ok */ | ||
|  |       negate_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       if ( accumulator.lsw & 0x80000000 ) | ||
|  | 	XSIG_LL(accumulator) ++; | ||
|  |       if ( accumulator.msw == 0 ) | ||
|  | 	{ | ||
|  | 	  /* The result is 1.0 */ | ||
|  | 	  FPU_copy_to_reg0(&CONST_1, TAG_Valid); | ||
|  | 	  return; | ||
|  | 	} | ||
|  |       else | ||
|  | 	{ | ||
|  | 	  significand(&result) = XSIG_LL(accumulator); | ||
|  |        | ||
|  | 	  /* will be a valid positive nr with expon = -1 */ | ||
|  | 	  setexponentpos(&result, -1); | ||
|  | 	} | ||
|  |     } | ||
|  |   else | ||
|  |     { | ||
|  |       fixed_arg = significand(st0_ptr); | ||
|  | 
 | ||
|  |       if ( exponent == 0 ) | ||
|  | 	{ | ||
|  | 	  /* The argument is >= 1.0 */ | ||
|  | 
 | ||
|  | 	  /* Put the binary point at the left. */ | ||
|  | 	  fixed_arg <<= 1; | ||
|  | 	} | ||
|  |       /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | ||
|  |       fixed_arg = 0x921fb54442d18469LL - fixed_arg; | ||
|  |       /* There is a special case which arises due to rounding, to fix here. */ | ||
|  |       if ( fixed_arg == 0xffffffffffffffffLL ) | ||
|  | 	fixed_arg = 0; | ||
|  | 
 | ||
|  |       exponent = -1; | ||
|  |       exp2 = -1; | ||
|  | 
 | ||
|  |       /* A shift is needed here only for a narrow range of arguments,
 | ||
|  | 	 i.e. for fixed_arg approx 2^-32, but we pick up more... */ | ||
|  |       if ( !(LL_MSW(fixed_arg) & 0xffff0000) ) | ||
|  | 	{ | ||
|  | 	  fixed_arg <<= 16; | ||
|  | 	  exponent -= 16; | ||
|  | 	  exp2 -= 16; | ||
|  | 	} | ||
|  | 
 | ||
|  |       XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; | ||
|  |       mul64_Xsig(&argSqrd, &fixed_arg); | ||
|  | 
 | ||
|  |       if ( exponent < -1 ) | ||
|  | 	{ | ||
|  | 	  /* shift the argument right by the required places */ | ||
|  | 	  shr_Xsig(&argSqrd, 2*(-1-exponent)); | ||
|  | 	} | ||
|  | 
 | ||
|  |       argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; | ||
|  |       argTo4.lsw = argSqrd.lsw; | ||
|  |       mul_Xsig_Xsig(&argTo4, &argTo4); | ||
|  | 
 | ||
|  |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, | ||
|  | 		      N_COEFF_N-1); | ||
|  |       mul_Xsig_Xsig(&accumulator, &argSqrd); | ||
|  |       negate_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, | ||
|  | 		      N_COEFF_P-1); | ||
|  | 
 | ||
|  |       shr_Xsig(&accumulator, 2);    /* Divide by four */ | ||
|  |       accumulator.msw |= 0x80000000;  /* Add 1.0 */ | ||
|  | 
 | ||
|  |       mul64_Xsig(&accumulator, &fixed_arg); | ||
|  |       mul64_Xsig(&accumulator, &fixed_arg); | ||
|  |       mul64_Xsig(&accumulator, &fixed_arg); | ||
|  | 
 | ||
|  |       /* Divide by four, FPU_REG compatible, etc */ | ||
|  |       exponent = 3*exponent; | ||
|  | 
 | ||
|  |       /* The minimum exponent difference is 3 */ | ||
|  |       shr_Xsig(&accumulator, exp2 - exponent); | ||
|  | 
 | ||
|  |       negate_Xsig(&accumulator); | ||
|  |       XSIG_LL(accumulator) += fixed_arg; | ||
|  | 
 | ||
|  |       /* The basic computation is complete. Now fix the answer to
 | ||
|  | 	 compensate for the error due to the approximation used for | ||
|  | 	 pi/2 | ||
|  | 	 */ | ||
|  | 
 | ||
|  |       /* This has an exponent of -65 */ | ||
|  |       XSIG_LL(fix_up) = 0x898cc51701b839a2ll; | ||
|  |       fix_up.lsw = 0; | ||
|  | 
 | ||
|  |       /* The fix-up needs to be improved for larger args */ | ||
|  |       if ( argSqrd.msw & 0xffc00000 ) | ||
|  | 	{ | ||
|  | 	  /* Get about 32 bit precision in these: */ | ||
|  | 	  fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2; | ||
|  | 	  fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24; | ||
|  | 	} | ||
|  | 
 | ||
|  |       exp2 += norm_Xsig(&accumulator); | ||
|  |       shr_Xsig(&accumulator, 1); /* Prevent overflow */ | ||
|  |       exp2++; | ||
|  |       shr_Xsig(&fix_up, 65 + exp2); | ||
|  | 
 | ||
|  |       add_Xsig_Xsig(&accumulator, &fix_up); | ||
|  | 
 | ||
|  |       echange = round_Xsig(&accumulator); | ||
|  | 
 | ||
|  |       setexponentpos(&result, exp2 + echange); | ||
|  |       significand(&result) = XSIG_LL(accumulator); | ||
|  |     } | ||
|  | 
 | ||
|  |   FPU_copy_to_reg0(&result, TAG_Valid); | ||
|  | 
 | ||
|  | #ifdef PARANOID
 | ||
|  |   if ( (exponent(&result) >= 0) | ||
|  |       && (significand(&result) > 0x8000000000000000LL) ) | ||
|  |     { | ||
|  |       EXCEPTION(EX_INTERNAL|0x151); | ||
|  |     } | ||
|  | #endif /* PARANOID */
 | ||
|  | 
 | ||
|  | } |