papermc/patches/api/0142-Async-Chunks-API.patch
Nassim Jahnke d8e07590e3
Updated Upstream (Bukkit/CraftBukkit)
Upstream has released updates that appear to apply and compile correctly.
This update has not been tested by PaperMC and as with ANY update, please do your own testing

Bukkit Changes:
5dbedae1 PR-864: Fix Registry#match() failing namespaced inputs
49256865 PR-863: Fix boolean PersistentDataType
9f15450b SPIGOT-7195, SPIGOT-7197: Add DataPack API
ebef5b6a Disable InterfaceIsType Checkstyle check
01d577f5 Slight tweak to boolean PersistentDataType javadoc
d2b99e56 PR-857: Add boolean PersistentDataType

CraftBukkit Changes:
2270366cd PR-1196: Test Registry instances more thoroughly
863dacb7a PR-1191: Do not start on pre-release Java 17
1f2dd8e12 SPIGOT-7362: Properly handle null in CraftBlock#blockFaceToNotch()
dbc70bed5 SPIGOT-7195, SPIGOT-7197: Add DataPack API
2023-06-06 11:09:19 +02:00

534 lines
24 KiB
Diff

From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Aikar <aikar@aikar.co>
Date: Mon, 29 Feb 2016 17:43:33 -0600
Subject: [PATCH] Async Chunks API
Adds API's to load or generate chunks asynchronously.
Also adds utility methods to Entity to teleport asynchronously.
diff --git a/src/main/java/org/bukkit/World.java b/src/main/java/org/bukkit/World.java
index 4c3150a959593c461f6cf92e9fd8a5f22ff94e8a..265d1751c5460121b29129d9588ef1a13564073b 100644
--- a/src/main/java/org/bukkit/World.java
+++ b/src/main/java/org/bukkit/World.java
@@ -936,6 +936,482 @@ public interface World extends RegionAccessor, WorldInfo, PluginMessageRecipient
}
return nearby;
}
+
+ /**
+ * This is the Legacy API before Java 8 was supported. Java 8 Consumer is provided,
+ * as well as future support
+ *
+ * Used by {@link World#getChunkAtAsync(Location,ChunkLoadCallback)} methods
+ * to request a {@link Chunk} to be loaded, with this callback receiving
+ * the chunk when it is finished.
+ *
+ * This callback will be executed on synchronously on the main thread.
+ *
+ * Timing and order this callback is fired is intentionally not defined and
+ * and subject to change.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ */
+ @Deprecated
+ public static interface ChunkLoadCallback extends java.util.function.Consumer<Chunk> {
+ public void onLoad(@NotNull Chunk chunk);
+
+ // backwards compat to old api
+ @Override
+ default void accept(@NotNull Chunk chunk) {
+ onLoad(chunk);
+ }
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param x Chunk X-coordinate of the chunk - floor(world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - floor(world coordinate / 16)
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(int x, int z, @NotNull ChunkLoadCallback cb) {
+ getChunkAtAsync(x, z, true).thenAccept(cb::onLoad).exceptionally((ex) -> {
+ Bukkit.getLogger().log(java.util.logging.Level.WARNING, "Exception in chunk load callback", ex);
+ return null;
+ });
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param loc Location of the chunk
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(@NotNull Location loc, @NotNull ChunkLoadCallback cb) {
+ getChunkAtAsync(loc, true).thenAccept(cb::onLoad).exceptionally((ex) -> {
+ Bukkit.getLogger().log(java.util.logging.Level.WARNING, "Exception in chunk load callback", ex);
+ return null;
+ });
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param block Block to get the containing chunk from
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(@NotNull Block block, @NotNull ChunkLoadCallback cb) {
+ getChunkAtAsync(block, true).thenAccept(cb::onLoad).exceptionally((ex) -> {
+ Bukkit.getLogger().log(java.util.logging.Level.WARNING, "Exception in chunk load callback", ex);
+ return null;
+ });
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - floor(world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - floor(world coordinate / 16)
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(int x, int z, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(x, z, true).thenAccept(cb).exceptionally((ex) -> {
+ Bukkit.getLogger().log(java.util.logging.Level.WARNING, "Exception in chunk load callback", ex);
+ return null;
+ });
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - floor(world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - floor(world coordinate / 16)
+ * @param gen Should we generate a chunk if it doesn't exist or not
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(int x, int z, boolean gen, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(x, z, gen).thenAccept(cb).exceptionally((ex) -> {
+ Bukkit.getLogger().log(java.util.logging.Level.WARNING, "Exception in chunk load callback", ex);
+ return null;
+ });
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param loc Location of the chunk
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(@NotNull Location loc, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, true, cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param loc Location of the chunk
+ * @param gen Should the chunk generate if it doesn't exist
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(@NotNull Location loc, boolean gen, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, gen, cb);
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param block Block to get the containing chunk from
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(@NotNull Block block, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true, cb);
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param block Block to get the containing chunk from
+ * @param gen Should the chunk generate if it doesn't exist
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(@NotNull Block block, boolean gen, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen, cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(@NotNull Location loc) {
+ return getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @param gen Should the chunk generate if it doesn't exist
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(@NotNull Location loc, boolean gen) {
+ return getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, gen);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(@NotNull Block block) {
+ return getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @param gen Should the chunk generate if it doesn't exist
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(@NotNull Block block, boolean gen) {
+ return getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - floor(world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - floor(world coordinate / 16)
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(int x, int z) {
+ return getChunkAtAsync(x, z, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - floor(world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - floor(world coordinate / 16)
+ * @param gen Should we generate a chunk if it doesn't exist or not
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(int x, int z, boolean gen) {
+ return getChunkAtAsync(x, z, gen, false);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(@NotNull Location loc) {
+ return getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, true, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @param gen Should the chunk generate if it doesn't exist
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(@NotNull Location loc, boolean gen) {
+ return getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, gen, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(@NotNull Block block) {
+ return getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @param gen Should the chunk generate if it doesn't exist
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(@NotNull Block block, boolean gen) {
+ return getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x X Coord
+ * @param z Z Coord
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(int x, int z) {
+ return getChunkAtAsync(x, z, true, true);
+ }
+
+ @NotNull
+ java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(int x, int z, boolean gen, boolean urgent);
// Paper end
/**
diff --git a/src/main/java/org/bukkit/entity/Entity.java b/src/main/java/org/bukkit/entity/Entity.java
index 5f703c8847a94c8fd356abe2a0cd45e6af6efcec..9eca441d6702752938813a1c97724edf13134171 100644
--- a/src/main/java/org/bukkit/entity/Entity.java
+++ b/src/main/java/org/bukkit/entity/Entity.java
@@ -165,6 +165,33 @@ public interface Entity extends Metadatable, CommandSender, Nameable, Persistent
*/
public boolean teleport(@NotNull Entity destination, @NotNull TeleportCause cause);
+ // Paper start
+ /**
+ * Loads/Generates(in 1.13+) the Chunk asynchronously, and then teleports the entity when the chunk is ready.
+ * @param loc Location to teleport to
+ * @return A future that will be completed with the result of the teleport
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Boolean> teleportAsync(@NotNull Location loc) {
+ return teleportAsync(loc, TeleportCause.PLUGIN);
+ }
+ /**
+ * Loads/Generates(in 1.13+) the Chunk asynchronously, and then teleports the entity when the chunk is ready.
+ * @param loc Location to teleport to
+ * @param cause Reason for teleport
+ * @return A future that will be completed with the result of the teleport
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Boolean> teleportAsync(@NotNull Location loc, @NotNull TeleportCause cause) {
+ java.util.concurrent.CompletableFuture<Boolean> future = new java.util.concurrent.CompletableFuture<>();
+ loc.getWorld().getChunkAtAsyncUrgently(loc).thenAccept((chunk) -> future.complete(teleport(loc, cause))).exceptionally(ex -> {
+ future.completeExceptionally(ex);
+ return null;
+ });
+ return future;
+ }
+ // Paper end
+
/**
* Returns a list of entities within a bounding box centered around this
* entity