looking-glass/c-host/platform/Linux/src/platform.c

390 lines
7.8 KiB
C
Raw Normal View History

2019-02-28 08:31:04 +00:00
/*
Looking Glass - KVM FrameRelay (KVMFR) Client
Copyright (C) 2017-2019 Geoffrey McRae <geoff@hostfission.com>
https://looking-glass.hostfission.com
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "app.h"
#include "debug.h"
#include <assert.h>
#include <getopt.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
2019-03-01 01:54:15 +00:00
#include <stdlib.h>
#include <string.h>
2019-03-01 01:54:15 +00:00
#include <pthread.h>
#include <signal.h>
#include <errno.h>
2019-03-01 01:54:15 +00:00
struct app
{
unsigned int shmSize;
int shmFD;
void * shmMap;
};
struct params
{
const char * shmDevice;
};
static struct app app;
static struct params params =
{
.shmDevice = "uio0"
};
2019-03-01 01:54:15 +00:00
struct osThreadHandle
{
const char * name;
osThreadFunction function;
void * opaque;
pthread_t handle;
int resultCode;
};
2019-02-28 08:31:04 +00:00
void sigHandler(int signo)
{
DEBUG_INFO("SIGINT");
app_quit();
}
2019-02-28 08:31:04 +00:00
int main(int argc, char * argv[])
{
static struct option longOptions[] =
{
{"shmDevice", required_argument, 0, 'f'},
{0, 0, 0, 0}
};
int optionIndex = 0;
while(true)
{
int c = getopt_long(argc, argv, "f:", longOptions, &optionIndex);
if (c == -1)
break;
switch(c)
{
case 'f':
params.shmDevice = optarg;
break;
}
}
2019-03-01 10:11:44 +00:00
// check the deice name
{
char file[100] = "/sys/class/uio/";
strncat(file, params.shmDevice, sizeof(file) - 1);
strncat(file, "/name" , sizeof(file) - 1);
int fd = open(file, O_RDONLY);
if (fd < 0)
{
DEBUG_ERROR("Failed to open: %s", file);
DEBUG_ERROR("Did you remmeber to modprobe the kvmfr module?");
return -1;
}
char name[32];
int len = read(fd, name, sizeof(name) - 1);
if (len <= 0)
{
DEBUG_ERROR("Failed to read: %s", file);
close(fd);
return -1;
}
name[len] = '\0';
close(fd);
while(len > 0 && name[len-1] == '\n')
{
--len;
name[len] = '\0';
}
2019-03-01 10:11:44 +00:00
if (strcmp(name, "KVMFR") != 0)
{
DEBUG_ERROR("Device is not a KVMFR device \"%s\" reports as: %s", file, name);
2019-03-01 10:11:44 +00:00
return -1;
}
}
// get the device size
{
char file[100] = "/sys/class/uio/";
strncat(file, params.shmDevice , sizeof(file) - 1);
strncat(file, "/maps/map0/size", sizeof(file) - 1);
int fd = open(file, O_RDONLY);
if (fd < 0)
{
DEBUG_ERROR("Failed to open: %s", file);
return -1;
}
char size[32];
int len = read(fd, size, sizeof(size) - 1);
if (len <= 0)
{
DEBUG_ERROR("Failed to read: %s", file);
close(fd);
return -1;
}
size[len] = '\0';
2019-03-01 10:11:44 +00:00
close(fd);
app.shmSize = strtoul(size, NULL, 16);
}
// open the device
{
char file[100] = "/dev/";
strncat(file, params.shmDevice, sizeof(file) - 1);
app.shmFD = open(file, O_RDWR, (mode_t)0600);
app.shmMap = MAP_FAILED;
if (app.shmFD < 0)
{
DEBUG_ERROR("Failed to open: %s", file);
return -1;
}
DEBUG_INFO("KVMFR Device : %s", file);
}
signal(SIGINT, sigHandler);
int result = app_main();
2019-02-28 08:31:04 +00:00
os_shmemUnmap();
close(app.shmFD);
2019-02-28 08:31:04 +00:00
return result;
}
unsigned int os_shmemSize()
{
return app.shmSize;
2019-02-28 08:31:04 +00:00
}
bool os_shmemMmap(void **ptr)
{
if (app.shmMap == MAP_FAILED)
{
app.shmMap = mmap(0, app.shmSize, PROT_READ | PROT_WRITE, MAP_SHARED, app.shmFD, 0);
if (app.shmMap == MAP_FAILED)
{
DEBUG_ERROR("Failed to map the shared memory device: %s", params.shmDevice);
return false;
}
}
*ptr = app.shmMap;
return true;
2019-02-28 08:31:04 +00:00
}
void os_shmemUnmap()
{
if (app.shmMap == MAP_FAILED)
return;
munmap(app.shmMap, app.shmSize);
app.shmMap = MAP_FAILED;
2019-03-01 01:54:15 +00:00
}
static void * threadWrapper(void * opaque)
{
osThreadHandle * handle = (osThreadHandle *)opaque;
handle->resultCode = handle->function(handle->opaque);
return NULL;
}
bool os_createThread(const char * name, osThreadFunction function, void * opaque, osThreadHandle ** handle)
{
*handle = (osThreadHandle*)malloc(sizeof(osThreadHandle));
(*handle)->name = name;
(*handle)->function = function;
(*handle)->opaque = opaque;
if (pthread_create(&(*handle)->handle, NULL, threadWrapper, *handle) != 0)
{
DEBUG_ERROR("pthread_create failed for thread: %s", name);
free(*handle);
*handle = NULL;
return false;
}
return true;
}
bool os_joinThread(osThreadHandle * handle, int * resultCode)
{
if (pthread_join(handle->handle, NULL) != 0)
{
DEBUG_ERROR("pthread_join failed for thread: %s", handle->name);
free(handle);
return false;
}
if (resultCode)
*resultCode = handle->resultCode;
free(handle);
return true;
}
struct osEventHandle
{
pthread_mutex_t mutex;
pthread_cond_t cond;
bool flag;
bool autoReset;
};
osEventHandle * os_createEvent(bool autoReset)
{
osEventHandle * handle = (osEventHandle *)calloc(sizeof(osEventHandle), 1);
if (!handle)
{
DEBUG_ERROR("Failed to allocate memory");
return NULL;
}
if (pthread_mutex_init(&handle->mutex, NULL) != 0)
{
DEBUG_ERROR("Failed to create the mutex");
free(handle);
return NULL;
}
if (pthread_cond_init(&handle->cond, NULL) != 0)
{
pthread_mutex_destroy(&handle->mutex);
free(handle);
return NULL;
}
handle->autoReset = autoReset;
return handle;
}
void os_freeEvent(osEventHandle * handle)
{
assert(handle);
pthread_cond_destroy (&handle->cond );
pthread_mutex_destroy(&handle->mutex);
free(handle);
}
bool os_waitEvent(osEventHandle * handle, unsigned int timeout)
{
assert(handle);
if (pthread_mutex_lock(&handle->mutex) != 0)
{
DEBUG_ERROR("Failed to lock the mutex");
return false;
}
while(!handle->flag)
{
if (timeout == TIMEOUT_INFINITE)
{
if (pthread_cond_wait(&handle->cond, &handle->mutex) != 0)
{
DEBUG_ERROR("Wait to wait on the condition");
return false;
}
}
else
{
struct timespec ts;
ts.tv_sec = timeout / 1000;
ts.tv_nsec = (timeout % 1000) * 1000000;
switch(pthread_cond_timedwait(&handle->cond, &handle->mutex, &ts))
{
case ETIMEDOUT:
return false;
default:
DEBUG_ERROR("Timed wait failed");
return false;
}
}
}
if (handle->autoReset)
handle->flag = false;
if (pthread_mutex_unlock(&handle->mutex) != 0)
{
DEBUG_ERROR("Failed to unlock the mutex");
return false;
}
return true;
}
bool os_signalEvent(osEventHandle * handle)
{
assert(handle);
if (pthread_mutex_lock(&handle->mutex) != 0)
{
DEBUG_ERROR("Failed to lock the mutex");
return false;
}
handle->flag = true;
if (pthread_mutex_unlock(&handle->mutex) != 0)
{
DEBUG_ERROR("Failed to unlock the mutex");
return false;
}
if (pthread_cond_signal(&handle->cond) != 0)
{
DEBUG_ERROR("Failed to signal the condition");
return false;
}
return true;
}
bool os_resetEvent(osEventHandle * handle)
{
assert(handle);
if (pthread_mutex_lock(&handle->mutex) != 0)
{
DEBUG_ERROR("Failed to lock the mutex");
return false;
}
handle->flag = false;
if (pthread_mutex_unlock(&handle->mutex) != 0)
{
DEBUG_ERROR("Failed to unlock the mutex");
return false;
}
2019-03-01 01:54:15 +00:00
return true;
2019-02-28 08:31:04 +00:00
}