git-annex/Annex/Transfer.hs
Joey Hess 77c42782d0
differentiate between concurrency enabled at command line and by git config
The latter should not affect --batch mode.
2020-09-16 11:47:12 -04:00

316 lines
11 KiB
Haskell

{- git-annex transfers
-
- Copyright 2012-2020 Joey Hess <id@joeyh.name>
-
- Licensed under the GNU AGPL version 3 or higher.
-}
{-# LANGUAGE CPP, BangPatterns #-}
module Annex.Transfer (
module X,
upload,
alwaysUpload,
download,
runTransfer,
alwaysRunTransfer,
noRetry,
stdRetry,
pickRemote,
) where
import Annex.Common
import qualified Annex
import Logs.Transfer as X
import Types.Transfer as X
import Annex.Notification as X
import Annex.Perms
import Utility.Metered
import Utility.ThreadScheduler
import Annex.LockPool
import Types.Key
import qualified Types.Remote as Remote
import Types.Concurrency
import Annex.Concurrent.Utility
import Types.WorkerPool
import Annex.WorkerPool
import Backend (isCryptographicallySecure)
import Control.Concurrent
import qualified Data.Map.Strict as M
import Data.Ord
upload :: Observable v => UUID -> Key -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> NotifyWitness -> Annex v
upload u key f d a _witness = guardHaveUUID u $
runTransfer (Transfer Upload u (fromKey id key)) f d a
alwaysUpload :: Observable v => UUID -> Key -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> NotifyWitness -> Annex v
alwaysUpload u key f d a _witness = guardHaveUUID u $
alwaysRunTransfer (Transfer Upload u (fromKey id key)) f d a
download :: Observable v => UUID -> Key -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> NotifyWitness -> Annex v
download u key f d a _witness = guardHaveUUID u $
runTransfer (Transfer Download u (fromKey id key)) f d a
guardHaveUUID :: Observable v => UUID -> Annex v -> Annex v
guardHaveUUID u a
| u == NoUUID = return observeFailure
| otherwise = a
{- Runs a transfer action. Creates and locks the lock file while the
- action is running, and stores info in the transfer information
- file.
-
- If the transfer action returns False, the transfer info is
- left in the failedTransferDir.
-
- If the transfer is already in progress, returns False.
-
- An upload can be run from a read-only filesystem, and in this case
- no transfer information or lock file is used.
-}
runTransfer :: Observable v => Transfer -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> Annex v
runTransfer = runTransfer' False
{- Like runTransfer, but ignores any existing transfer lock file for the
- transfer, allowing re-running a transfer that is already in progress.
-
- Note that this may result in confusing progress meter display in the
- webapp, if multiple processes are writing to the transfer info file. -}
alwaysRunTransfer :: Observable v => Transfer -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> Annex v
alwaysRunTransfer = runTransfer' True
runTransfer' :: Observable v => Bool -> Transfer -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> Annex v
runTransfer' ignorelock t afile retrydecider transferaction = enteringStage TransferStage $ debugLocks $ checkSecureHashes t $ do
info <- liftIO $ startTransferInfo afile
(meter, tfile, createtfile, metervar) <- mkProgressUpdater t info
mode <- annexFileMode
(lck, inprogress) <- prep tfile createtfile mode
if inprogress && not ignorelock
then do
showNote "transfer already in progress, or unable to take transfer lock"
return observeFailure
else do
v <- retry 0 info metervar (transferaction meter)
liftIO $ cleanup tfile lck
if observeBool v
then removeFailedTransfer t
else recordFailedTransfer t info
return v
where
prep :: FilePath -> Annex () -> FileMode -> Annex (Maybe LockHandle, Bool)
#ifndef mingw32_HOST_OS
prep tfile createtfile mode = catchPermissionDenied (const prepfailed) $ do
let lck = transferLockFile tfile
createAnnexDirectory $ takeDirectory lck
tryLockExclusive (Just mode) lck >>= \case
Nothing -> return (Nothing, True)
Just lockhandle -> ifM (checkSaneLock lck lockhandle)
( do
createtfile
return (Just lockhandle, False)
, do
liftIO $ dropLock lockhandle
return (Nothing, True)
)
#else
prep tfile createtfile _mode = catchPermissionDenied (const prepfailed) $ do
let lck = transferLockFile tfile
createAnnexDirectory $ takeDirectory lck
catchMaybeIO (liftIO $ lockExclusive lck) >>= \case
Nothing -> return (Nothing, False)
Just Nothing -> return (Nothing, True)
Just (Just lockhandle) -> do
createtfile
return (Just lockhandle, False)
#endif
prepfailed = return (Nothing, False)
cleanup _ Nothing = noop
cleanup tfile (Just lockhandle) = do
let lck = transferLockFile tfile
void $ tryIO $ removeFile tfile
#ifndef mingw32_HOST_OS
void $ tryIO $ removeFile lck
dropLock lockhandle
#else
{- Windows cannot delete the lockfile until the lock
- is closed. So it's possible to race with another
- process that takes the lock before it's removed,
- so ignore failure to remove.
-}
dropLock lockhandle
void $ tryIO $ removeFile lck
#endif
retry numretries oldinfo metervar run =
tryNonAsync run >>= \case
Right v
| observeBool v -> return v
| otherwise -> checkretry
Left e -> do
warning (show e)
checkretry
where
checkretry = do
b <- getbytescomplete metervar
let newinfo = oldinfo { bytesComplete = Just b }
let !numretries' = succ numretries
ifM (retrydecider numretries' oldinfo newinfo)
( retry numretries' newinfo metervar run
, return observeFailure
)
getbytescomplete metervar
| transferDirection t == Upload =
liftIO $ readMVar metervar
| otherwise = do
f <- fromRepo $ gitAnnexTmpObjectLocation (transferKey t)
liftIO $ catchDefaultIO 0 $ getFileSize f
{- Avoid download and upload of keys with insecure content when
- annex.securehashesonly is configured.
-
- This is not a security check. Even if this let the content be
- downloaded, the actual security checks would prevent the content from
- being added to the repository. The only reason this is done here is to
- avoid transferring content that's going to be rejected anyway.
-
- We assume that, if annex.securehashesonly is set and the local repo
- still contains content using an insecure hash, remotes will likewise
- tend to be configured to reject it, so Upload is also prevented.
-}
checkSecureHashes :: Observable v => Transfer -> Annex v -> Annex v
checkSecureHashes t a = ifM (isCryptographicallySecure (transferKey t))
( a
, ifM (annexSecureHashesOnly <$> Annex.getGitConfig)
( do
warning $ "annex.securehashesonly blocked transfer of " ++ decodeBS (formatKeyVariety variety) ++ " key"
return observeFailure
, a
)
)
where
variety = fromKey keyVariety (transferKey t)
type NumRetries = Integer
type RetryDecider = NumRetries -> TransferInfo -> TransferInfo -> Annex Bool
{- Both retry deciders are checked together, so if one chooses to delay,
- it will always take effect. -}
combineRetryDeciders :: RetryDecider -> RetryDecider -> RetryDecider
combineRetryDeciders a b = \n old new -> do
ar <- a n old new
br <- b n old new
return (ar || br)
noRetry :: RetryDecider
noRetry _ _ _ = pure False
stdRetry :: RetryDecider
stdRetry = combineRetryDeciders forwardRetry configuredRetry
{- Keep retrying failed transfers, as long as forward progress is being
- made.
-
- Up to a point -- while some remotes can resume where the previous
- transfer left off, and so it would make sense to keep retrying forever,
- other remotes restart each transfer from the beginning, and so even if
- forward progress is being made, it's not real progress. So, retry a
- maximum of 5 times by default.
-}
forwardRetry :: RetryDecider
forwardRetry numretries old new
| fromMaybe 0 (bytesComplete old) < fromMaybe 0 (bytesComplete new) =
(numretries <=) <$> maybe globalretrycfg pure remoteretrycfg
| otherwise = return False
where
globalretrycfg = fromMaybe 5 . annexForwardRetry
<$> Annex.getGitConfig
remoteretrycfg = remoteAnnexRetry =<<
(Remote.gitconfig <$> transferRemote new)
{- Retries a number of times with growing delays in between when enabled
- by git configuration. -}
configuredRetry :: RetryDecider
configuredRetry numretries _old new = do
(maxretries, Seconds initretrydelay) <- getcfg $
Remote.gitconfig <$> transferRemote new
if numretries < maxretries
then do
let retrydelay = Seconds (initretrydelay * 2^(numretries-1))
showSideAction $ "Delaying " ++ show (fromSeconds retrydelay) ++ "s before retrying."
liftIO $ threadDelaySeconds retrydelay
return True
else return False
where
globalretrycfg = fromMaybe 0 . annexRetry
<$> Annex.getGitConfig
globalretrydelaycfg = fromMaybe (Seconds 1) . annexRetryDelay
<$> Annex.getGitConfig
getcfg Nothing = (,) <$> globalretrycfg <*> globalretrydelaycfg
getcfg (Just gc) = (,)
<$> maybe globalretrycfg return (remoteAnnexRetry gc)
<*> maybe globalretrydelaycfg return (remoteAnnexRetryDelay gc)
{- Picks a remote from the list and tries a transfer to it. If the transfer
- does not succeed, goes on to try other remotes from the list.
-
- The list should already be ordered by remote cost, and is normally
- tried in order. However, when concurrent jobs are running, they will
- be assigned different remotes of the same cost when possible. This can
- increase total transfer speed.
-}
pickRemote :: Observable v => [Remote] -> (Remote -> Annex v) -> Annex v
pickRemote l a = debugLocks $ go l =<< getConcurrency
where
go [] _ = return observeFailure
go (r:[]) _ = a r
go rs NonConcurrent = gononconcurrent rs
go rs (Concurrent n)
| n <= 1 = gononconcurrent rs
| otherwise = goconcurrent rs
go rs ConcurrentPerCpu = goconcurrent rs
gononconcurrent [] = return observeFailure
gononconcurrent (r:rs) = do
ok <- a r
if observeBool ok
then return ok
else gononconcurrent rs
goconcurrent rs = do
mv <- Annex.getState Annex.activeremotes
active <- liftIO $ takeMVar mv
let rs' = sortBy (lessActiveFirst active) rs
goconcurrent' mv active rs'
goconcurrent' mv active [] = do
liftIO $ putMVar mv active
return observeFailure
goconcurrent' mv active (r:rs) = do
let !active' = M.insertWith (+) r 1 active
liftIO $ putMVar mv active'
let getnewactive = do
active'' <- liftIO $ takeMVar mv
let !active''' = M.update (\n -> if n > 1 then Just (n-1) else Nothing) r active''
return active'''
let removeactive = liftIO . putMVar mv =<< getnewactive
ok <- a r `onException` removeactive
if observeBool ok
then do
removeactive
return ok
else do
active'' <- getnewactive
-- Re-sort the remaining rs
-- because other threads could have
-- been assigned them in the meantime.
let rs' = sortBy (lessActiveFirst active'') rs
goconcurrent' mv active'' rs'
lessActiveFirst :: M.Map Remote Integer -> Remote -> Remote -> Ordering
lessActiveFirst active a b
| Remote.cost a == Remote.cost b = comparing (`M.lookup` active) a b
| otherwise = comparing Remote.cost a b