40ecf58d4b
This does not change the overall license of the git-annex program, which was already AGPL due to a number of sources files being AGPL already. Legally speaking, I'm adding a new license under which these files are now available; I already released their current contents under the GPL license. Now they're dual licensed GPL and AGPL. However, I intend for all my future changes to these files to only be released under the AGPL license, and I won't be tracking the dual licensing status, so I'm simply changing the license statement to say it's AGPL. (In some cases, others wrote parts of the code of a file and released it under the GPL; but in all cases I have contributed a significant portion of the code in each file and it's that code that is getting the AGPL license; the GPL license of other contributors allows combining with AGPL code.)
287 lines
9.8 KiB
Haskell
287 lines
9.8 KiB
Haskell
{- git-annex transfers
|
|
-
|
|
- Copyright 2012-2018 Joey Hess <id@joeyh.name>
|
|
-
|
|
- Licensed under the GNU AGPL version 3 or higher.
|
|
-}
|
|
|
|
{-# LANGUAGE CPP, BangPatterns #-}
|
|
|
|
module Annex.Transfer (
|
|
module X,
|
|
upload,
|
|
alwaysUpload,
|
|
download,
|
|
runTransfer,
|
|
alwaysRunTransfer,
|
|
noRetry,
|
|
stdRetry,
|
|
pickRemote,
|
|
) where
|
|
|
|
import Annex.Common
|
|
import qualified Annex
|
|
import Logs.Transfer as X
|
|
import Types.Transfer as X
|
|
import Annex.Notification as X
|
|
import Annex.Perms
|
|
import Utility.Metered
|
|
import Utility.ThreadScheduler
|
|
import Annex.LockPool
|
|
import Types.Key
|
|
import qualified Types.Remote as Remote
|
|
import Types.Concurrency
|
|
|
|
import Control.Concurrent
|
|
import qualified Data.Map.Strict as M
|
|
import Data.Ord
|
|
|
|
upload :: Observable v => UUID -> Key -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> NotifyWitness -> Annex v
|
|
upload u key f d a _witness = guardHaveUUID u $
|
|
runTransfer (Transfer Upload u key) f d a
|
|
|
|
alwaysUpload :: Observable v => UUID -> Key -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> NotifyWitness -> Annex v
|
|
alwaysUpload u key f d a _witness = guardHaveUUID u $
|
|
alwaysRunTransfer (Transfer Upload u key) f d a
|
|
|
|
download :: Observable v => UUID -> Key -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> NotifyWitness -> Annex v
|
|
download u key f d a _witness = guardHaveUUID u $
|
|
runTransfer (Transfer Download u key) f d a
|
|
|
|
guardHaveUUID :: Observable v => UUID -> Annex v -> Annex v
|
|
guardHaveUUID u a
|
|
| u == NoUUID = return observeFailure
|
|
| otherwise = a
|
|
|
|
{- Runs a transfer action. Creates and locks the lock file while the
|
|
- action is running, and stores info in the transfer information
|
|
- file.
|
|
-
|
|
- If the transfer action returns False, the transfer info is
|
|
- left in the failedTransferDir.
|
|
-
|
|
- If the transfer is already in progress, returns False.
|
|
-
|
|
- An upload can be run from a read-only filesystem, and in this case
|
|
- no transfer information or lock file is used.
|
|
-}
|
|
runTransfer :: Observable v => Transfer -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> Annex v
|
|
runTransfer = runTransfer' False
|
|
|
|
{- Like runTransfer, but ignores any existing transfer lock file for the
|
|
- transfer, allowing re-running a transfer that is already in progress.
|
|
-
|
|
- Note that this may result in confusing progress meter display in the
|
|
- webapp, if multiple processes are writing to the transfer info file. -}
|
|
alwaysRunTransfer :: Observable v => Transfer -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> Annex v
|
|
alwaysRunTransfer = runTransfer' True
|
|
|
|
runTransfer' :: Observable v => Bool -> Transfer -> AssociatedFile -> RetryDecider -> (MeterUpdate -> Annex v) -> Annex v
|
|
runTransfer' ignorelock t afile retrydecider transferaction = debugLocks $ checkSecureHashes t $ do
|
|
shouldretry <- retrydecider
|
|
info <- liftIO $ startTransferInfo afile
|
|
(meter, tfile, createtfile, metervar) <- mkProgressUpdater t info
|
|
mode <- annexFileMode
|
|
(lck, inprogress) <- prep tfile createtfile mode
|
|
if inprogress && not ignorelock
|
|
then do
|
|
showNote "transfer already in progress, or unable to take transfer lock"
|
|
return observeFailure
|
|
else do
|
|
v <- retry shouldretry info metervar $ transferaction meter
|
|
liftIO $ cleanup tfile lck
|
|
if observeBool v
|
|
then removeFailedTransfer t
|
|
else recordFailedTransfer t info
|
|
return v
|
|
where
|
|
prep :: FilePath -> Annex () -> FileMode -> Annex (Maybe LockHandle, Bool)
|
|
#ifndef mingw32_HOST_OS
|
|
prep tfile createtfile mode = catchPermissionDenied (const prepfailed) $ do
|
|
let lck = transferLockFile tfile
|
|
createAnnexDirectory $ takeDirectory lck
|
|
tryLockExclusive (Just mode) lck >>= \case
|
|
Nothing -> return (Nothing, True)
|
|
Just lockhandle -> ifM (checkSaneLock lck lockhandle)
|
|
( do
|
|
createtfile
|
|
return (Just lockhandle, False)
|
|
, do
|
|
liftIO $ dropLock lockhandle
|
|
return (Nothing, True)
|
|
)
|
|
#else
|
|
prep tfile createtfile _mode = catchPermissionDenied (const prepfailed) $ do
|
|
let lck = transferLockFile tfile
|
|
createAnnexDirectory $ takeDirectory lck
|
|
catchMaybeIO (liftIO $ lockExclusive lck) >>= \case
|
|
Nothing -> return (Nothing, False)
|
|
Just Nothing -> return (Nothing, True)
|
|
Just (Just lockhandle) -> do
|
|
createtfile
|
|
return (Just lockhandle, False)
|
|
#endif
|
|
prepfailed = return (Nothing, False)
|
|
|
|
cleanup _ Nothing = noop
|
|
cleanup tfile (Just lockhandle) = do
|
|
let lck = transferLockFile tfile
|
|
void $ tryIO $ removeFile tfile
|
|
#ifndef mingw32_HOST_OS
|
|
void $ tryIO $ removeFile lck
|
|
dropLock lockhandle
|
|
#else
|
|
{- Windows cannot delete the lockfile until the lock
|
|
- is closed. So it's possible to race with another
|
|
- process that takes the lock before it's removed,
|
|
- so ignore failure to remove.
|
|
-}
|
|
dropLock lockhandle
|
|
void $ tryIO $ removeFile lck
|
|
#endif
|
|
retry shouldretry oldinfo metervar run = tryNonAsync run >>= \case
|
|
Right v
|
|
| observeBool v -> return v
|
|
| otherwise -> checkretry
|
|
Left e -> do
|
|
warning (show e)
|
|
checkretry
|
|
where
|
|
checkretry = do
|
|
b <- getbytescomplete metervar
|
|
let newinfo = oldinfo { bytesComplete = Just b }
|
|
ifM (shouldretry oldinfo newinfo)
|
|
( retry shouldretry newinfo metervar run
|
|
, return observeFailure
|
|
)
|
|
getbytescomplete metervar
|
|
| transferDirection t == Upload =
|
|
liftIO $ readMVar metervar
|
|
| otherwise = do
|
|
f <- fromRepo $ gitAnnexTmpObjectLocation (transferKey t)
|
|
liftIO $ catchDefaultIO 0 $ getFileSize f
|
|
|
|
{- Avoid download and upload of keys with insecure content when
|
|
- annex.securehashesonly is configured.
|
|
-
|
|
- This is not a security check. Even if this let the content be
|
|
- downloaded, the actual security checks would prevent the content from
|
|
- being added to the repository. The only reason this is done here is to
|
|
- avoid transferring content that's going to be rejected anyway.
|
|
-
|
|
- We assume that, if annex.securehashesonly is set and the local repo
|
|
- still contains content using an insecure hash, remotes will likewise
|
|
- tend to be configured to reject it, so Upload is also prevented.
|
|
-}
|
|
checkSecureHashes :: Observable v => Transfer -> Annex v -> Annex v
|
|
checkSecureHashes t a
|
|
| cryptographicallySecure variety = a
|
|
| otherwise = ifM (annexSecureHashesOnly <$> Annex.getGitConfig)
|
|
( do
|
|
warning $ "annex.securehashesonly blocked transfer of " ++ decodeBS (formatKeyVariety variety) ++ " key"
|
|
return observeFailure
|
|
, a
|
|
)
|
|
where
|
|
variety = keyVariety (transferKey t)
|
|
|
|
type RetryDecider = Annex (TransferInfo -> TransferInfo -> Annex Bool)
|
|
|
|
{- The first RetryDecider will be checked first; only if it says not to
|
|
- retry will the second one be checked. -}
|
|
combineRetryDeciders :: RetryDecider -> RetryDecider -> RetryDecider
|
|
combineRetryDeciders a b = do
|
|
ar <- a
|
|
br <- b
|
|
return $ \old new -> ar old new <||> br old new
|
|
|
|
noRetry :: RetryDecider
|
|
noRetry = pure $ \_ _ -> pure False
|
|
|
|
stdRetry :: RetryDecider
|
|
stdRetry = combineRetryDeciders forwardRetry configuredRetry
|
|
|
|
{- Retries a transfer when it fails, as long as the failed transfer managed
|
|
- to send some data. -}
|
|
forwardRetry :: RetryDecider
|
|
forwardRetry = pure $ \old new -> pure $
|
|
fromMaybe 0 (bytesComplete old) < fromMaybe 0 (bytesComplete new)
|
|
|
|
{- Retries a number of times with growing delays in between when enabled
|
|
- by git configuration. -}
|
|
configuredRetry :: RetryDecider
|
|
configuredRetry = debugLocks $ do
|
|
retrycounter <- liftIO $ newMVar 0
|
|
return $ \_old new -> do
|
|
(maxretries, Seconds initretrydelay) <- getcfg $
|
|
Remote.gitconfig <$> transferRemote new
|
|
retries <- liftIO $ modifyMVar retrycounter $
|
|
\n -> return (n + 1, n + 1)
|
|
if retries < maxretries
|
|
then do
|
|
let retrydelay = Seconds (initretrydelay * 2^(retries-1))
|
|
showSideAction $ "Delaying " ++ show (fromSeconds retrydelay) ++ "s before retrying."
|
|
liftIO $ threadDelaySeconds retrydelay
|
|
return True
|
|
else return False
|
|
where
|
|
globalretrycfg = fromMaybe 0 . annexRetry
|
|
<$> Annex.getGitConfig
|
|
globalretrydelaycfg = fromMaybe (Seconds 1) . annexRetryDelay
|
|
<$> Annex.getGitConfig
|
|
getcfg Nothing = (,) <$> globalretrycfg <*> globalretrydelaycfg
|
|
getcfg (Just gc) = (,)
|
|
<$> maybe globalretrycfg return (remoteAnnexRetry gc)
|
|
<*> maybe globalretrydelaycfg return (remoteAnnexRetryDelay gc)
|
|
|
|
{- Picks a remote from the list and tries a transfer to it. If the transfer
|
|
- does not succeed, goes on to try other remotes from the list.
|
|
-
|
|
- The list should already be ordered by remote cost, and is normally
|
|
- tried in order. However, when concurrent jobs are running, they will
|
|
- be assigned different remotes of the same cost when possible. This can
|
|
- increase total transfer speed.
|
|
-}
|
|
pickRemote :: Observable v => [Remote] -> (Remote -> Annex v) -> Annex v
|
|
pickRemote l a = debugLocks $ go l =<< Annex.getState Annex.concurrency
|
|
where
|
|
go [] _ = return observeFailure
|
|
go (r:[]) _ = a r
|
|
go rs (Concurrent n) | n > 1 = do
|
|
mv <- Annex.getState Annex.activeremotes
|
|
active <- liftIO $ takeMVar mv
|
|
let rs' = sortBy (lessActiveFirst active) rs
|
|
goconcurrent mv active rs'
|
|
go (r:rs) _ = do
|
|
ok <- a r
|
|
if observeBool ok
|
|
then return ok
|
|
else go rs NonConcurrent
|
|
goconcurrent mv active [] = do
|
|
liftIO $ putMVar mv active
|
|
return observeFailure
|
|
goconcurrent mv active (r:rs) = do
|
|
let !active' = M.insertWith (+) r 1 active
|
|
liftIO $ putMVar mv active'
|
|
let getnewactive = do
|
|
active'' <- liftIO $ takeMVar mv
|
|
let !active''' = M.update (\n -> if n > 1 then Just (n-1) else Nothing) r active''
|
|
return active'''
|
|
let removeactive = liftIO . putMVar mv =<< getnewactive
|
|
ok <- a r `onException` removeactive
|
|
if observeBool ok
|
|
then do
|
|
removeactive
|
|
return ok
|
|
else do
|
|
active'' <- getnewactive
|
|
-- Re-sort the remaining rs
|
|
-- because other threads could have
|
|
-- been assigned them in the meantime.
|
|
let rs' = sortBy (lessActiveFirst active'') rs
|
|
goconcurrent mv active'' rs'
|
|
|
|
lessActiveFirst :: M.Map Remote Integer -> Remote -> Remote -> Ordering
|
|
lessActiveFirst active a b
|
|
| Remote.cost a == Remote.cost b = comparing (`M.lookup` active) a b
|
|
| otherwise = comparing Remote.cost a b
|