git-annex/Crypto.hs
Joey Hess 1d263e1e7e lift types from IO to Annex
Some remotes like External need to run store and retrieve actions in Annex,
not IO. In order to do that lift, I had to dive pretty deep into the
utilities, making Utility.Gpg and Utility.Tmp be partly converted to using
MonadIO, and Control.Monad.Catch for exception handling.

There should be no behavior changes in this commit.

This commit was sponsored by Michael Barabanov.
2014-07-29 16:28:44 -04:00

221 lines
7.8 KiB
Haskell

{- git-annex crypto
-
- Currently using gpg; could later be modified to support different
- crypto backends if neccessary.
-
- Copyright 2011-2014 Joey Hess <joey@kitenet.net>
-
- Licensed under the GNU GPL version 3 or higher.
-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE Rank2Types #-}
module Crypto (
Cipher,
KeyIds(..),
EncKey,
StorableCipher(..),
genEncryptedCipher,
genSharedCipher,
updateEncryptedCipher,
describeCipher,
decryptCipher,
encryptKey,
feedFile,
feedBytes,
readBytes,
encrypt,
decrypt,
getGpgEncParams,
prop_HmacSha1WithCipher_sane
) where
import qualified Data.ByteString.Lazy as L
import Data.ByteString.Lazy.UTF8 (fromString)
import Control.Applicative
import qualified Data.Map as M
import Control.Monad.IO.Class
import Control.Monad.Catch (MonadMask)
import Common.Annex
import qualified Utility.Gpg as Gpg
import Types.Key
import Types.Crypto
import Types.Remote
{- The beginning of a Cipher is used for MAC'ing; the remainder is used
- as the GPG symmetric encryption passphrase when using the hybrid
- scheme. Note that the cipher itself is base-64 encoded, hence the
- string is longer than 'cipherSize': 683 characters, padded to 684.
-
- The 256 first characters that feed the MAC represent at best 192
- bytes of entropy. However that's more than enough for both the
- default MAC algorithm, namely HMAC-SHA1, and the "strongest"
- currently supported, namely HMAC-SHA512, which respectively need
- (ideally) 64 and 128 bytes of entropy.
-
- The remaining characters (320 bytes of entropy) is enough for GnuPG's
- symetric cipher; unlike weaker public key crypto, the key does not
- need to be too large.
-}
cipherBeginning :: Int
cipherBeginning = 256
cipherSize :: Int
cipherSize = 512
cipherPassphrase :: Cipher -> String
cipherPassphrase (Cipher c) = drop cipherBeginning c
cipherPassphrase (MacOnlyCipher _) = error "MAC-only cipher"
cipherMac :: Cipher -> String
cipherMac (Cipher c) = take cipherBeginning c
cipherMac (MacOnlyCipher c) = c
{- Creates a new Cipher, encrypted to the specified key id. -}
genEncryptedCipher :: String -> EncryptedCipherVariant -> Bool -> IO StorableCipher
genEncryptedCipher keyid variant highQuality = do
ks <- Gpg.findPubKeys keyid
random <- Gpg.genRandom highQuality size
encryptCipher (mkCipher random) variant ks
where
(mkCipher, size) = case variant of
Hybrid -> (Cipher, cipherSize) -- used for MAC + symmetric
PubKey -> (MacOnlyCipher, cipherBeginning) -- only used for MAC
{- Creates a new, shared Cipher. -}
genSharedCipher :: Bool -> IO StorableCipher
genSharedCipher highQuality =
SharedCipher <$> Gpg.genRandom highQuality cipherSize
{- Updates an existing Cipher, re-encrypting it to add or remove keyids,
- depending on whether the first component is True or False. -}
updateEncryptedCipher :: [(Bool, String)] -> StorableCipher -> IO StorableCipher
updateEncryptedCipher _ SharedCipher{} = undefined
updateEncryptedCipher [] encipher = return encipher
updateEncryptedCipher newkeys encipher@(EncryptedCipher _ variant (KeyIds ks)) = do
dropKeys <- listKeyIds [ k | (False, k) <- newkeys ]
forM_ dropKeys $ \k -> unless (k `elem` ks) $
error $ "Key " ++ k ++ " was not present; cannot remove."
addKeys <- listKeyIds [ k | (True, k) <- newkeys ]
let ks' = (addKeys ++ ks) \\ dropKeys
when (null ks') $
error "Cannot remove the last key."
cipher <- decryptCipher encipher
encryptCipher cipher variant $ KeyIds ks'
where
listKeyIds = concat <$$> mapM (keyIds <$$> Gpg.findPubKeys)
describeCipher :: StorableCipher -> String
describeCipher (SharedCipher _) = "shared cipher"
describeCipher (EncryptedCipher _ variant (KeyIds ks)) =
scheme ++ " with gpg " ++ keys ks ++ " " ++ unwords ks
where
scheme = case variant of
Hybrid -> "hybrid cipher"
PubKey -> "pubkey crypto"
keys [_] = "key"
keys _ = "keys"
{- Encrypts a Cipher to the specified KeyIds. -}
encryptCipher :: Cipher -> EncryptedCipherVariant -> KeyIds -> IO StorableCipher
encryptCipher c variant (KeyIds ks) = do
-- gpg complains about duplicate recipient keyids
let ks' = nub $ sort ks
let params = Gpg.pkEncTo ks' ++ Gpg.stdEncryptionParams False
encipher <- Gpg.pipeStrict params cipher
return $ EncryptedCipher encipher variant (KeyIds ks')
where
cipher = case c of
Cipher x -> x
MacOnlyCipher x -> x
{- Decrypting an EncryptedCipher is expensive; the Cipher should be cached. -}
decryptCipher :: StorableCipher -> IO Cipher
decryptCipher (SharedCipher t) = return $ Cipher t
decryptCipher (EncryptedCipher t variant _) =
mkCipher <$> Gpg.pipeStrict [ Param "--decrypt" ] t
where
mkCipher = case variant of
Hybrid -> Cipher
PubKey -> MacOnlyCipher
type EncKey = Key -> Key
{- Generates an encrypted form of a Key. The encryption does not need to be
- reversable, nor does it need to be the same type of encryption used
- on content. It does need to be repeatable. -}
encryptKey :: Mac -> Cipher -> EncKey
encryptKey mac c k = stubKey
{ keyName = macWithCipher mac c (key2file k)
, keyBackendName = "GPG" ++ showMac mac
}
type Feeder = Handle -> IO ()
type Reader m a = Handle -> m a
feedFile :: FilePath -> Feeder
feedFile f h = L.hPut h =<< L.readFile f
feedBytes :: L.ByteString -> Feeder
feedBytes = flip L.hPut
readBytes :: (MonadIO m) => (L.ByteString -> m a) -> Reader m a
readBytes a h = liftIO (L.hGetContents h) >>= a
{- Runs a Feeder action, that generates content that is symmetrically
- encrypted with the Cipher (unless it is empty, in which case
- public-key encryption is used) using the given gpg options, and then
- read by the Reader action. Note: For public-key encryption,
- recipients MUST be included in 'params' (for instance using
- 'getGpgEncParams'). -}
encrypt :: (MonadIO m, MonadMask m) => [CommandParam] -> Cipher -> Feeder -> Reader m a -> m a
encrypt params cipher = case cipher of
Cipher{} -> Gpg.feedRead (params ++ Gpg.stdEncryptionParams True) $
cipherPassphrase cipher
MacOnlyCipher{} -> Gpg.pipeLazy $ params ++ Gpg.stdEncryptionParams False
{- Runs a Feeder action, that generates content that is decrypted with the
- Cipher (or using a private key if the Cipher is empty), and read by the
- Reader action. -}
decrypt :: (MonadIO m, MonadMask m) => Cipher -> Feeder -> Reader m a -> m a
decrypt cipher = case cipher of
Cipher{} -> Gpg.feedRead [Param "--decrypt"] $ cipherPassphrase cipher
MacOnlyCipher{} -> Gpg.pipeLazy [Param "--decrypt"]
macWithCipher :: Mac -> Cipher -> String -> String
macWithCipher mac c = macWithCipher' mac (cipherMac c)
macWithCipher' :: Mac -> String -> String -> String
macWithCipher' mac c s = calcMac mac (fromString c) (fromString s)
{- Ensure that macWithCipher' returns the same thing forevermore. -}
prop_HmacSha1WithCipher_sane :: Bool
prop_HmacSha1WithCipher_sane = known_good == macWithCipher' HmacSha1 "foo" "bar"
where
known_good = "46b4ec586117154dacd49d664e5d63fdc88efb51"
{- Return some options suitable for GnuPG encryption, symmetric or not. -}
class LensGpgEncParams a where getGpgEncParams :: a -> [CommandParam]
{- Extract the GnuPG options from a pair of a Remote Config and a Remote
- Git Config. -}
instance LensGpgEncParams (RemoteConfig, RemoteGitConfig) where
getGpgEncParams (c,gc) = map Param (remoteAnnexGnupgOptions gc) ++ getGpgEncParams c
where
{- Extract the GnuPG options from a Remote Config, ignoring any
- git config settings. (Which is ok if the remote is just being set up
- and so doesn't have any.)
-
- If the remote is configured to use public-key encryption,
- look up the recipient keys and add them to the option list.-}
instance LensGpgEncParams RemoteConfig where
getGpgEncParams c = case M.lookup "encryption" c of
Just "pubkey" -> Gpg.pkEncTo $ maybe [] (split ",") $ M.lookup "cipherkeys" c
_ -> []
{- Extract the GnuPG options from a Remote. -}
instance LensGpgEncParams (RemoteA a) where
getGpgEncParams r = getGpgEncParams (config r, gitconfig r)