git-annex/P2P/IO.hs
Joey Hess 54ad1b4cfb
Windows: Support long filenames in more (possibly all) of the code
Works around this bug in unix-compat:
https://github.com/jacobstanley/unix-compat/issues/56
getFileStatus and other FilePath using functions in unix-compat do not do
UNC conversion on Windows.

Made Utility.RawFilePath use convertToWindowsNativeNamespace to do the
necessary conversion on windows to support long filenames.

Audited all imports of System.PosixCompat.Files to make sure that no
functions that operate on FilePath were imported from it. Instead, use
the equvilants from Utility.RawFilePath. In particular the
re-export of that module in Common had to be removed, which led to lots
of other changes throughout the code.

The changes to Build.Configure, Build.DesktopFile, and Build.TestConfig
make Utility.Directory not be needed to build setup. And so let it use
Utility.RawFilePath, which depends on unix, which cannot be in
setup-depends.

Sponsored-by: Dartmouth College's Datalad project
2023-03-01 15:55:58 -04:00

394 lines
12 KiB
Haskell

{- P2P protocol, IO implementation
-
- Copyright 2016-2018 Joey Hess <id@joeyh.name>
-
- Licensed under the GNU AGPL version 3 or higher.
-}
{-# LANGUAGE RankNTypes, FlexibleContexts, OverloadedStrings, CPP #-}
module P2P.IO
( RunProto
, RunState(..)
, mkRunState
, P2PConnection(..)
, ConnIdent(..)
, ClosableConnection(..)
, stdioP2PConnection
, connectPeer
, closeConnection
, serveUnixSocket
, setupHandle
, ProtoFailure(..)
, describeProtoFailure
, runNetProto
, runNet
) where
import Common
import P2P.Protocol
import P2P.Address
import Git
import Git.Command
import Utility.AuthToken
import Utility.SimpleProtocol
import Utility.Metered
import Utility.Tor
import Utility.FileMode
import Utility.Debug
import Types.UUID
import Annex.ChangedRefs
import qualified Utility.RawFilePath as R
import Control.Monad.Free
import Control.Monad.IO.Class
import System.IO.Error
import Network.Socket
import Control.Concurrent
import Control.Concurrent.Async
import Control.Concurrent.STM
import qualified Data.ByteString as B
import qualified Data.ByteString.Lazy as L
import qualified Network.Socket as S
import System.PosixCompat.Files (groupReadMode, groupWriteMode, otherReadMode, otherWriteMode)
-- Type of interpreters of the Proto free monad.
type RunProto m = forall a. Proto a -> m (Either ProtoFailure a)
data ProtoFailure
= ProtoFailureMessage String
| ProtoFailureException SomeException
| ProtoFailureIOError IOError
describeProtoFailure :: ProtoFailure -> String
describeProtoFailure (ProtoFailureMessage s) = s
describeProtoFailure (ProtoFailureException e) = show e
describeProtoFailure (ProtoFailureIOError e) = show e
data RunState
= Serving UUID (Maybe ChangedRefsHandle) (TVar ProtocolVersion)
| Client (TVar ProtocolVersion)
mkRunState :: (TVar ProtocolVersion -> RunState) -> IO RunState
mkRunState mk = do
tvar <- newTVarIO defaultProtocolVersion
return (mk tvar)
data P2PConnection = P2PConnection
{ connRepo :: Repo
, connCheckAuth :: (AuthToken -> Bool)
, connIhdl :: Handle
, connOhdl :: Handle
, connIdent :: ConnIdent
}
-- Identifier for a connection, only used for debugging.
newtype ConnIdent = ConnIdent (Maybe String)
data ClosableConnection conn
= OpenConnection conn
| ClosedConnection
-- P2PConnection using stdio.
stdioP2PConnection :: Git.Repo -> P2PConnection
stdioP2PConnection g = P2PConnection
{ connRepo = g
, connCheckAuth = const False
, connIhdl = stdin
, connOhdl = stdout
, connIdent = ConnIdent Nothing
}
-- Opens a connection to a peer. Does not authenticate with it.
connectPeer :: Git.Repo -> P2PAddress -> IO P2PConnection
connectPeer g (TorAnnex onionaddress onionport) = do
h <- setupHandle =<< connectHiddenService onionaddress onionport
return $ P2PConnection
{ connRepo = g
, connCheckAuth = const False
, connIhdl = h
, connOhdl = h
, connIdent = ConnIdent Nothing
}
closeConnection :: P2PConnection -> IO ()
closeConnection conn = do
hClose (connIhdl conn)
hClose (connOhdl conn)
-- Serves the protocol on a unix socket.
--
-- The callback is run to serve a connection, and is responsible for
-- closing the Handle when done.
--
-- Note that while the callback is running, other connections won't be
-- processed, so longterm work should be run in a separate thread by
-- the callback.
serveUnixSocket :: FilePath -> (Handle -> IO ()) -> IO ()
serveUnixSocket unixsocket serveconn = do
removeWhenExistsWith R.removeLink (toRawFilePath unixsocket)
soc <- S.socket S.AF_UNIX S.Stream S.defaultProtocol
S.bind soc (S.SockAddrUnix unixsocket)
-- Allow everyone to read and write to the socket,
-- so a daemon like tor, that is probably running as a different
-- de sock $ addModes
-- user, can access it.
--
-- Connections have to authenticate to do anything,
-- so it's fine that other local users can connect to the
-- socket.
modifyFileMode (toRawFilePath unixsocket) $ addModes
[groupReadMode, groupWriteMode, otherReadMode, otherWriteMode]
S.listen soc 2
forever $ do
(conn, _) <- S.accept soc
setupHandle conn >>= serveconn
setupHandle :: Socket -> IO Handle
setupHandle s = do
h <- socketToHandle s ReadWriteMode
hSetBuffering h LineBuffering
hSetBinaryMode h False
return h
-- Purposefully incomplete interpreter of Proto.
--
-- This only runs Net actions. No Local actions will be run
-- (those need the Annex monad) -- if the interpreter reaches any,
-- it returns Nothing.
runNetProto :: RunState -> P2PConnection -> Proto a -> IO (Either ProtoFailure a)
runNetProto runst conn = go
where
go :: RunProto IO
go (Pure v) = return (Right v)
go (Free (Net n)) = runNet runst conn go n
go (Free (Local _)) = return $ Left $
ProtoFailureMessage "unexpected annex operation attempted"
-- Interpreter of the Net part of Proto.
--
-- An interpreter of Proto has to be provided, to handle the rest of Proto
-- actions.
runNet :: (MonadIO m, MonadMask m) => RunState -> P2PConnection -> RunProto m -> NetF (Proto a) -> m (Either ProtoFailure a)
runNet runst conn runner f = case f of
SendMessage m next -> do
v <- liftIO $ tryNonAsync $ do
let l = unwords (formatMessage m)
debugMessage conn "P2P >" m
hPutStrLn (connOhdl conn) l
hFlush (connOhdl conn)
case v of
Left e -> return $ Left $ ProtoFailureException e
Right () -> runner next
ReceiveMessage next -> do
v <- liftIO $ tryIOError $ getProtocolLine (connIhdl conn)
case v of
Left e -> return $ Left $ ProtoFailureIOError e
Right Nothing -> return $ Left $
ProtoFailureMessage "protocol error"
Right (Just l) -> case parseMessage l of
Just m -> do
liftIO $ debugMessage conn "P2P <" m
runner (next (Just m))
Nothing -> runner (next Nothing)
SendBytes len b p next -> do
v <- liftIO $ tryNonAsync $ do
ok <- sendExactly len b (connOhdl conn) p
hFlush (connOhdl conn)
return ok
case v of
Right True -> runner next
Right False -> return $ Left $
ProtoFailureMessage "short data write"
Left e -> return $ Left $ ProtoFailureException e
ReceiveBytes len p next -> do
v <- liftIO $ tryNonAsync $ receiveExactly len (connIhdl conn) p
case v of
Left e -> return $ Left $ ProtoFailureException e
Right b -> runner (next b)
CheckAuthToken _u t next -> do
let authed = connCheckAuth conn t
runner (next authed)
Relay hin hout next -> do
v <- liftIO $ runRelay runnerio hin hout
case v of
Left e -> return $ Left e
Right exitcode -> runner (next exitcode)
RelayService service next -> do
v <- liftIO $ runRelayService conn runnerio service
case v of
Left e -> return $ Left e
Right () -> runner next
SetProtocolVersion v next -> do
liftIO $ atomically $ writeTVar versiontvar v
runner next
GetProtocolVersion next ->
liftIO (readTVarIO versiontvar) >>= runner . next
where
-- This is only used for running Net actions when relaying,
-- so it's ok to use runNetProto, despite it not supporting
-- all Proto actions.
runnerio = runNetProto runst conn
versiontvar = case runst of
Serving _ _ tv -> tv
Client tv -> tv
debugMessage :: P2PConnection -> String -> Message -> IO ()
debugMessage conn prefix m = do
tid <- myThreadId
debug "P2P.IO" $ concat $ catMaybes $
[ (\ident -> "[" ++ ident ++ "] ") <$> mident
, Just $ "[" ++ show tid ++ "] "
, Just $ prefix ++ " " ++ unwords (formatMessage safem)
]
where
safem = case m of
AUTH u _ -> AUTH u nullAuthToken
_ -> m
ConnIdent mident = connIdent conn
-- Send exactly the specified number of bytes or returns False.
--
-- The ByteString can be larger or smaller than the specified length.
-- For example, it can be lazily streaming from a file that gets
-- appended to, or truncated.
--
-- Must avoid sending too many bytes as it would confuse the other end.
-- This is easily dealt with by truncating it.
--
-- If too few bytes are sent, the only option is to give up on this
-- connection. False is returned to indicate this problem.
sendExactly :: Len -> L.ByteString -> Handle -> MeterUpdate -> IO Bool
sendExactly (Len n) b h p = do
sent <- meteredWrite' p (B.hPut h) (L.take (fromIntegral n) b)
return (fromBytesProcessed sent == n)
receiveExactly :: Len -> Handle -> MeterUpdate -> IO L.ByteString
receiveExactly (Len n) h p = hGetMetered h (Just n) p
runRelay :: RunProto IO -> RelayHandle -> RelayHandle -> IO (Either ProtoFailure ExitCode)
runRelay runner (RelayHandle hout) (RelayHandle hin) =
bracket setup cleanup go
`catchNonAsync` (return . Left . ProtoFailureException)
where
setup = do
v <- newEmptyMVar
t1 <- async $ relayFeeder runner v hin
t2 <- async $ relayReader v hout
return (v, t1, t2)
cleanup (_, t1, t2) = do
hClose hin
hClose hout
cancel t1
cancel t2
go (v, _, _) = relayHelper runner v
runRelayService :: P2PConnection -> RunProto IO -> Service -> IO (Either ProtoFailure ())
runRelayService conn runner service =
withCreateProcess serviceproc' go
`catchNonAsync` (return . Left . ProtoFailureException)
where
cmd = case service of
UploadPack -> "upload-pack"
ReceivePack -> "receive-pack"
serviceproc = gitCreateProcess
[ Param cmd
, File (fromRawFilePath (repoPath (connRepo conn)))
] (connRepo conn)
serviceproc' = serviceproc
{ std_out = CreatePipe
, std_in = CreatePipe
}
go (Just hin) (Just hout) _ pid = do
v <- newEmptyMVar
r <- withAsync (relayFeeder runner v hin) $ \_ ->
withAsync (relayReader v hout) $ \_ ->
withAsync (waitexit v pid) $ \_ -> do
r <- runrelay v
hClose hin
hClose hout
return r
void $ waitForProcess pid
return r
go _ _ _ _ = error "internal"
runrelay v = relayHelper runner v >>= \case
Left e -> return $ Left e
Right exitcode -> runner $
net $ relayToPeer (RelayDone exitcode)
waitexit v pid = putMVar v . RelayDone =<< waitForProcess pid
-- Processes RelayData as it is put into the MVar.
relayHelper :: RunProto IO -> MVar RelayData -> IO (Either ProtoFailure ExitCode)
relayHelper runner v = loop
where
loop = do
d <- takeMVar v
case d of
RelayToPeer b -> do
r <- runner $ net $ relayToPeer (RelayToPeer b)
case r of
Left e -> return (Left e)
Right () -> loop
RelayDone exitcode -> do
_ <- runner $ net $ relayToPeer (RelayDone exitcode)
return (Right exitcode)
RelayFromPeer _ -> loop -- not handled here
-- Takes input from the peer, and sends it to the relay process's stdin.
-- Repeats until the peer tells it it's done or hangs up.
relayFeeder :: RunProto IO -> MVar RelayData -> Handle -> IO ()
relayFeeder runner v hin = loop
where
loop = do
mrd <- runner $ net relayFromPeer
case mrd of
Left _e ->
putMVar v (RelayDone (ExitFailure 1))
Right (RelayDone exitcode) ->
putMVar v (RelayDone exitcode)
Right (RelayFromPeer b) -> do
L.hPut hin b
hFlush hin
loop
Right (RelayToPeer _) -> loop -- not handled here
-- Reads input from the Handle and puts it into the MVar for relaying to
-- the peer. Continues until EOF on the Handle.
relayReader :: MVar RelayData -> Handle -> IO ()
relayReader v hout = loop
where
loop = do
bs <- getsome []
case bs of
[] -> return ()
_ -> do
putMVar v $ RelayToPeer (L.fromChunks bs)
loop
-- Wait for the first available chunk. Then, without blocking,
-- try to get more chunks, in case a stream of chunks is being
-- written in close succession.
--
-- On Windows, hGetNonBlocking is broken, so avoid using it there.
getsome [] = do
b <- B.hGetSome hout chunk
if B.null b
then return []
#ifndef mingw32_HOST_OS
else getsome [b]
#else
else return [b]
#endif
getsome bs = do
b <- B.hGetNonBlocking hout chunk
if B.null b
then return (reverse bs)
else getsome (b:bs)
chunk = 65536