b2bafdb2fc
That could cause git-annex to get confused about whether a locked file's content was present, when the object file got touched. Unfortunately this means more work sometimes when annex.thin is set, since it has to checksum the file to tell if it's still got the right content. Had to suppress output when inAnnex calls isUnmodified, otherwise "(checksum...)" would be printed in places it ought not to be, eg "git annex get" could turn out not need to get anything, and so only display that. This commit was sponsored by Ole-Morten Duesund on Patreon.
978 lines
31 KiB
Haskell
978 lines
31 KiB
Haskell
{- git-annex file content managing
|
||
-
|
||
- Copyright 2010-2018 Joey Hess <id@joeyh.name>
|
||
-
|
||
- Licensed under the GNU GPL version 3 or higher.
|
||
-}
|
||
|
||
{-# LANGUAGE CPP #-}
|
||
|
||
module Annex.Content (
|
||
inAnnex,
|
||
inAnnex',
|
||
inAnnexSafe,
|
||
inAnnexCheck,
|
||
lockContentShared,
|
||
lockContentForRemoval,
|
||
ContentRemovalLock,
|
||
RetrievalSecurityPolicy(..),
|
||
getViaTmp,
|
||
getViaTmpFromDisk,
|
||
checkDiskSpaceToGet,
|
||
prepTmp,
|
||
withTmp,
|
||
checkDiskSpace,
|
||
needMoreDiskSpace,
|
||
moveAnnex,
|
||
populatePointerFile,
|
||
linkToAnnex,
|
||
linkFromAnnex,
|
||
LinkAnnexResult(..),
|
||
unlinkAnnex,
|
||
checkedCopyFile,
|
||
linkOrCopy,
|
||
linkOrCopy',
|
||
sendAnnex,
|
||
prepSendAnnex,
|
||
removeAnnex,
|
||
moveBad,
|
||
KeyLocation(..),
|
||
getKeysPresent,
|
||
saveState,
|
||
downloadUrl,
|
||
preseedTmp,
|
||
dirKeys,
|
||
withObjectLoc,
|
||
staleKeysPrune,
|
||
pruneTmpWorkDirBefore,
|
||
isUnmodified,
|
||
verifyKeyContent,
|
||
VerifyConfig(..),
|
||
Verification(..),
|
||
unVerified,
|
||
withTmpWorkDir,
|
||
) where
|
||
|
||
import System.IO.Unsafe (unsafeInterleaveIO)
|
||
import qualified Data.Set as S
|
||
|
||
import Annex.Common
|
||
import Logs.Location
|
||
import Types.Transfer
|
||
import Logs.Transfer
|
||
import qualified Git
|
||
import qualified Annex
|
||
import qualified Annex.Queue
|
||
import qualified Annex.Branch
|
||
import Utility.FileMode
|
||
import qualified Annex.Url as Url
|
||
import Utility.CopyFile
|
||
import Utility.Metered
|
||
import Config
|
||
import Git.FilePath
|
||
import Annex.Perms
|
||
import Annex.Link
|
||
import qualified Annex.Content.Direct as Direct
|
||
import Annex.ReplaceFile
|
||
import Annex.LockPool
|
||
import Messages.Progress
|
||
import Types.Remote (unVerified, Verification(..), RetrievalSecurityPolicy(..))
|
||
import qualified Types.Remote
|
||
import qualified Types.Backend
|
||
import qualified Backend
|
||
import qualified Database.Keys
|
||
import Types.NumCopies
|
||
import Types.Key
|
||
import Annex.UUID
|
||
import Annex.InodeSentinal
|
||
import Utility.InodeCache
|
||
import Annex.Content.LowLevel
|
||
import Annex.Content.PointerFile
|
||
|
||
{- Checks if a given key's content is currently present. -}
|
||
inAnnex :: Key -> Annex Bool
|
||
inAnnex key = inAnnexCheck key $ liftIO . doesFileExist
|
||
|
||
{- Runs an arbitrary check on a key's content. -}
|
||
inAnnexCheck :: Key -> (FilePath -> Annex Bool) -> Annex Bool
|
||
inAnnexCheck key check = inAnnex' id False check key
|
||
|
||
{- inAnnex that performs an arbitrary check of the key's content. -}
|
||
inAnnex' :: (a -> Bool) -> a -> (FilePath -> Annex a) -> Key -> Annex a
|
||
inAnnex' isgood bad check key = withObjectLoc key checkindirect checkdirect
|
||
where
|
||
checkindirect loc = do
|
||
r <- check loc
|
||
if isgood r
|
||
then ifM (annexThin <$> Annex.getGitConfig)
|
||
-- When annex.thin is set, the object file
|
||
-- could be modified; make sure it's not.
|
||
-- (Suppress any messages about
|
||
-- checksumming, to avoid them cluttering
|
||
-- the display.)
|
||
( ifM (doQuietAction $ isUnmodified key loc)
|
||
( return r
|
||
, return bad
|
||
)
|
||
, return r
|
||
)
|
||
else return bad
|
||
|
||
-- In direct mode, at least one of the associated files must pass the
|
||
-- check. Additionally, the file must be unmodified.
|
||
checkdirect [] = return bad
|
||
checkdirect (loc:locs) = do
|
||
r <- check loc
|
||
if isgood r
|
||
then ifM (Direct.goodContent key loc)
|
||
( return r
|
||
, checkdirect locs
|
||
)
|
||
else checkdirect locs
|
||
|
||
{- A safer check; the key's content must not only be present, but
|
||
- is not in the process of being removed. -}
|
||
inAnnexSafe :: Key -> Annex (Maybe Bool)
|
||
inAnnexSafe key = inAnnex' (fromMaybe True) (Just False) go key
|
||
where
|
||
is_locked = Nothing
|
||
is_unlocked = Just True
|
||
is_missing = Just False
|
||
|
||
go contentfile = maybe (checkindirect contentfile) (checkdirect contentfile)
|
||
=<< contentLockFile key
|
||
|
||
#ifndef mingw32_HOST_OS
|
||
checkindirect contentfile = checkOr is_missing contentfile
|
||
{- In direct mode, the content file must exist, but
|
||
- the lock file generally won't exist unless a removal is in
|
||
- process. -}
|
||
checkdirect contentfile lockfile =
|
||
ifM (liftIO $ doesFileExist contentfile)
|
||
( checkOr is_unlocked lockfile
|
||
, return is_missing
|
||
)
|
||
checkOr d lockfile = checkLocked lockfile >>= return . \case
|
||
Nothing -> d
|
||
Just True -> is_locked
|
||
Just False -> is_unlocked
|
||
#else
|
||
checkindirect f = liftIO $ ifM (doesFileExist f)
|
||
( lockShared f >>= \case
|
||
Nothing -> return is_locked
|
||
Just lockhandle -> do
|
||
dropLock lockhandle
|
||
return is_unlocked
|
||
, return is_missing
|
||
)
|
||
{- In Windows, see if we can take a shared lock. If so,
|
||
- remove the lock file to clean up after ourselves. -}
|
||
checkdirect contentfile lockfile =
|
||
ifM (liftIO $ doesFileExist contentfile)
|
||
( modifyContent lockfile $ liftIO $
|
||
lockShared lockfile >>= \case
|
||
Nothing -> return is_locked
|
||
Just lockhandle -> do
|
||
dropLock lockhandle
|
||
void $ tryIO $ nukeFile lockfile
|
||
return is_unlocked
|
||
, return is_missing
|
||
)
|
||
#endif
|
||
|
||
{- Direct mode and especially Windows has to use a separate lock
|
||
- file from the content, since locking the actual content file
|
||
- would interfere with the user's use of it. -}
|
||
contentLockFile :: Key -> Annex (Maybe FilePath)
|
||
#ifndef mingw32_HOST_OS
|
||
contentLockFile key = ifM isDirect
|
||
( Just <$> calcRepo (gitAnnexContentLock key)
|
||
, return Nothing
|
||
)
|
||
#else
|
||
contentLockFile key = Just <$> calcRepo (gitAnnexContentLock key)
|
||
#endif
|
||
|
||
{- Prevents the content from being removed while the action is running.
|
||
- Uses a shared lock.
|
||
-
|
||
- If locking fails, or the content is not present, throws an exception
|
||
- rather than running the action.
|
||
-
|
||
- Note that, in direct mode, nothing prevents the user from directly
|
||
- editing or removing the content, even while it's locked by this.
|
||
-}
|
||
lockContentShared :: Key -> (VerifiedCopy -> Annex a) -> Annex a
|
||
lockContentShared key a = lockContentUsing lock key $ ifM (inAnnex key)
|
||
( do
|
||
u <- getUUID
|
||
withVerifiedCopy LockedCopy u (return True) a
|
||
, giveup $ "failed to lock content: not present"
|
||
)
|
||
where
|
||
#ifndef mingw32_HOST_OS
|
||
lock contentfile Nothing = tryLockShared Nothing contentfile
|
||
lock _ (Just lockfile) = posixLocker tryLockShared lockfile
|
||
#else
|
||
lock = winLocker lockShared
|
||
#endif
|
||
|
||
{- Exclusively locks content, while performing an action that
|
||
- might remove it.
|
||
-}
|
||
lockContentForRemoval :: Key -> (ContentRemovalLock -> Annex a) -> Annex a
|
||
lockContentForRemoval key a = lockContentUsing lock key $
|
||
a (ContentRemovalLock key)
|
||
where
|
||
#ifndef mingw32_HOST_OS
|
||
{- Since content files are stored with the write bit disabled, have
|
||
- to fiddle with permissions to open for an exclusive lock. -}
|
||
lock contentfile Nothing = bracket_
|
||
(thawContent contentfile)
|
||
(freezeContent contentfile)
|
||
(tryLockExclusive Nothing contentfile)
|
||
lock _ (Just lockfile) = posixLocker tryLockExclusive lockfile
|
||
#else
|
||
lock = winLocker lockExclusive
|
||
#endif
|
||
|
||
{- Passed the object content file, and maybe a separate lock file to use,
|
||
- when the content file itself should not be locked. -}
|
||
type ContentLocker = FilePath -> Maybe LockFile -> Annex (Maybe LockHandle)
|
||
|
||
#ifndef mingw32_HOST_OS
|
||
posixLocker :: (Maybe FileMode -> LockFile -> Annex (Maybe LockHandle)) -> LockFile -> Annex (Maybe LockHandle)
|
||
posixLocker takelock lockfile = do
|
||
mode <- annexFileMode
|
||
modifyContent lockfile $
|
||
takelock (Just mode) lockfile
|
||
|
||
#else
|
||
winLocker :: (LockFile -> IO (Maybe LockHandle)) -> ContentLocker
|
||
winLocker takelock _ (Just lockfile) = do
|
||
modifyContent lockfile $
|
||
void $ liftIO $ tryIO $
|
||
writeFile lockfile ""
|
||
liftIO $ takelock lockfile
|
||
-- never reached; windows always uses a separate lock file
|
||
winLocker _ _ Nothing = return Nothing
|
||
#endif
|
||
|
||
lockContentUsing :: ContentLocker -> Key -> Annex a -> Annex a
|
||
lockContentUsing locker key a = do
|
||
contentfile <- calcRepo $ gitAnnexLocation key
|
||
lockfile <- contentLockFile key
|
||
bracket
|
||
(lock contentfile lockfile)
|
||
(unlock lockfile)
|
||
(const a)
|
||
where
|
||
alreadylocked = giveup "content is locked"
|
||
failedtolock e = giveup $ "failed to lock content: " ++ show e
|
||
|
||
lock contentfile lockfile =
|
||
(maybe alreadylocked return
|
||
=<< locker contentfile lockfile)
|
||
`catchIO` failedtolock
|
||
|
||
#ifndef mingw32_HOST_OS
|
||
unlock mlockfile lck = do
|
||
maybe noop cleanuplockfile mlockfile
|
||
liftIO $ dropLock lck
|
||
#else
|
||
unlock mlockfile lck = do
|
||
-- Can't delete a locked file on Windows
|
||
liftIO $ dropLock lck
|
||
maybe noop cleanuplockfile mlockfile
|
||
#endif
|
||
|
||
cleanuplockfile lockfile = modifyContent lockfile $
|
||
void $ liftIO $ tryIO $
|
||
nukeFile lockfile
|
||
|
||
{- Runs an action, passing it the temp file to get,
|
||
- and if the action succeeds, verifies the file matches
|
||
- the key and moves the file into the annex as a key's content. -}
|
||
getViaTmp :: RetrievalSecurityPolicy -> VerifyConfig -> Key -> (FilePath -> Annex (Bool, Verification)) -> Annex Bool
|
||
getViaTmp rsp v key action = checkDiskSpaceToGet key False $
|
||
getViaTmpFromDisk rsp v key action
|
||
|
||
{- Like getViaTmp, but does not check that there is enough disk space
|
||
- for the incoming key. For use when the key content is already on disk
|
||
- and not being copied into place. -}
|
||
getViaTmpFromDisk :: RetrievalSecurityPolicy -> VerifyConfig -> Key -> (FilePath -> Annex (Bool, Verification)) -> Annex Bool
|
||
getViaTmpFromDisk rsp v key action = checkallowed $ do
|
||
tmpfile <- prepTmp key
|
||
resuming <- liftIO $ doesFileExist tmpfile
|
||
(ok, verification) <- action tmpfile
|
||
-- When the temp file already had content, we don't know if
|
||
-- that content is good or not, so only trust if it the action
|
||
-- Verified it in passing. Otherwise, force verification even
|
||
-- if the VerifyConfig normally disables it.
|
||
let verification' = if resuming
|
||
then case verification of
|
||
Verified -> Verified
|
||
_ -> MustVerify
|
||
else verification
|
||
if ok
|
||
then ifM (verifyKeyContent rsp v verification' key tmpfile)
|
||
( ifM (pruneTmpWorkDirBefore tmpfile (moveAnnex key))
|
||
( do
|
||
logStatus key InfoPresent
|
||
return True
|
||
, return False
|
||
)
|
||
, do
|
||
warning "verification of content failed"
|
||
-- The bad content is not retained, because
|
||
-- a retry should not try to resume from it
|
||
-- since it's apparently corrupted.
|
||
-- Also, the bad content could be any data,
|
||
-- including perhaps the content of another
|
||
-- file than the one that was requested,
|
||
-- and so it's best not to keep it on disk.
|
||
pruneTmpWorkDirBefore tmpfile (liftIO . nukeFile)
|
||
return False
|
||
)
|
||
-- On transfer failure, the tmp file is left behind, in case
|
||
-- caller wants to resume its transfer
|
||
else return False
|
||
where
|
||
-- Avoid running the action to get the content when the
|
||
-- RetrievalSecurityPolicy would cause verification to always fail.
|
||
checkallowed a = case rsp of
|
||
RetrievalAllKeysSecure -> a
|
||
RetrievalVerifiableKeysSecure
|
||
| isVerifiable (keyVariety key) -> a
|
||
| otherwise -> ifM (annexAllowUnverifiedDownloads <$> Annex.getGitConfig)
|
||
( a
|
||
, warnUnverifiableInsecure key >> return False
|
||
)
|
||
|
||
{- Verifies that a file is the expected content of a key.
|
||
-
|
||
- Configuration can prevent verification, for either a
|
||
- particular remote or always, unless the RetrievalSecurityPolicy
|
||
- requires verification.
|
||
-
|
||
- Most keys have a known size, and if so, the file size is checked.
|
||
-
|
||
- When the key's backend allows verifying the content (via checksum),
|
||
- it is checked.
|
||
-
|
||
- If the RetrievalSecurityPolicy requires verification and the key's
|
||
- backend doesn't support it, the verification will fail.
|
||
-}
|
||
verifyKeyContent :: RetrievalSecurityPolicy -> VerifyConfig -> Verification -> Key -> FilePath -> Annex Bool
|
||
verifyKeyContent rsp v verification k f = case (rsp, verification) of
|
||
(_, Verified) -> return True
|
||
(RetrievalVerifiableKeysSecure, _)
|
||
| isVerifiable (keyVariety k) -> verify
|
||
| otherwise -> ifM (annexAllowUnverifiedDownloads <$> Annex.getGitConfig)
|
||
( verify
|
||
, warnUnverifiableInsecure k >> return False
|
||
)
|
||
(_, UnVerified) -> ifM (shouldVerify v)
|
||
( verify
|
||
, return True
|
||
)
|
||
(_, MustVerify) -> verify
|
||
where
|
||
verify = verifysize <&&> verifycontent
|
||
verifysize = case keySize k of
|
||
Nothing -> return True
|
||
Just size -> do
|
||
size' <- liftIO $ catchDefaultIO 0 $ getFileSize f
|
||
return (size' == size)
|
||
verifycontent = case Types.Backend.verifyKeyContent =<< Backend.maybeLookupBackendVariety (keyVariety k) of
|
||
Nothing -> return True
|
||
Just verifier -> verifier k f
|
||
|
||
warnUnverifiableInsecure :: Key -> Annex ()
|
||
warnUnverifiableInsecure k = warning $ unwords
|
||
[ "Getting " ++ kv ++ " keys with this remote is not secure;"
|
||
, "the content cannot be verified to be correct."
|
||
, "(Use annex.security.allow-unverified-downloads to bypass"
|
||
, "this safety check.)"
|
||
]
|
||
where
|
||
kv = formatKeyVariety (keyVariety k)
|
||
|
||
data VerifyConfig = AlwaysVerify | NoVerify | RemoteVerify Remote | DefaultVerify
|
||
|
||
shouldVerify :: VerifyConfig -> Annex Bool
|
||
shouldVerify AlwaysVerify = return True
|
||
shouldVerify NoVerify = return False
|
||
shouldVerify DefaultVerify = annexVerify <$> Annex.getGitConfig
|
||
shouldVerify (RemoteVerify r) =
|
||
(shouldVerify DefaultVerify
|
||
<&&> pure (remoteAnnexVerify (Types.Remote.gitconfig r)))
|
||
-- Export remotes are not key/value stores, so always verify
|
||
-- content from them even when verification is disabled.
|
||
<||> Types.Remote.isExportSupported r
|
||
|
||
{- Checks if there is enough free disk space to download a key
|
||
- to its temp file.
|
||
-
|
||
- When the temp file already exists, count the space it is using as
|
||
- free, since the download will overwrite it or resume.
|
||
-
|
||
- Wen there's enough free space, runs the download action.
|
||
-}
|
||
checkDiskSpaceToGet :: Key -> a -> Annex a -> Annex a
|
||
checkDiskSpaceToGet key unabletoget getkey = do
|
||
tmp <- fromRepo $ gitAnnexTmpObjectLocation key
|
||
|
||
e <- liftIO $ doesFileExist tmp
|
||
alreadythere <- liftIO $ if e
|
||
then getFileSize tmp
|
||
else return 0
|
||
ifM (checkDiskSpace Nothing key alreadythere True)
|
||
( do
|
||
-- The tmp file may not have been left writable
|
||
when e $ thawContent tmp
|
||
getkey
|
||
, return unabletoget
|
||
)
|
||
|
||
prepTmp :: Key -> Annex FilePath
|
||
prepTmp key = do
|
||
tmp <- fromRepo $ gitAnnexTmpObjectLocation key
|
||
createAnnexDirectory (parentDir tmp)
|
||
return tmp
|
||
|
||
{- Prepares a temp file for a key, runs an action on it, and cleans up
|
||
- the temp file. If the action throws an exception, the temp file is
|
||
- left behind, which allows for resuming.
|
||
-}
|
||
withTmp :: Key -> (FilePath -> Annex a) -> Annex a
|
||
withTmp key action = do
|
||
tmp <- prepTmp key
|
||
res <- action tmp
|
||
pruneTmpWorkDirBefore tmp (liftIO . nukeFile)
|
||
return res
|
||
|
||
{- Moves a key's content into .git/annex/objects/
|
||
-
|
||
- When a key has associated pointer files, the object is hard
|
||
- linked (or copied) to the files, and the object file is left thawed.
|
||
-
|
||
- In direct mode, moves the object file to the associated file, or files.
|
||
-
|
||
- What if the key there already has content? This could happen for
|
||
- various reasons; perhaps the same content is being annexed again.
|
||
- Perhaps there has been a hash collision generating the keys.
|
||
-
|
||
- The current strategy is to assume that in this case it's safe to delete
|
||
- one of the two copies of the content; and the one already in the annex
|
||
- is left there, assuming it's the original, canonical copy.
|
||
-
|
||
- I considered being more paranoid, and checking that both files had
|
||
- the same content. Decided against it because A) users explicitly choose
|
||
- a backend based on its hashing properties and so if they're dealing
|
||
- with colliding files it's their own fault and B) adding such a check
|
||
- would not catch all cases of colliding keys. For example, perhaps
|
||
- a remote has a key; if it's then added again with different content then
|
||
- the overall system now has two different peices of content for that
|
||
- key, and one of them will probably get deleted later. So, adding the
|
||
- check here would only raise expectations that git-annex cannot truely
|
||
- meet.
|
||
-
|
||
- May return false, when a particular variety of key is not being
|
||
- accepted into the repository. Will display a warning message in this
|
||
- case. May also throw exceptions in some cases.
|
||
-}
|
||
moveAnnex :: Key -> FilePath -> Annex Bool
|
||
moveAnnex key src = ifM (checkSecureHashes key)
|
||
( do
|
||
withObjectLoc key storeobject storedirect
|
||
return True
|
||
, return False
|
||
)
|
||
where
|
||
storeobject dest = ifM (liftIO $ doesFileExist dest)
|
||
( alreadyhave
|
||
, modifyContent dest $ do
|
||
freezeContent src
|
||
liftIO $ moveFile src dest
|
||
g <- Annex.gitRepo
|
||
fs <- map (`fromTopFilePath` g)
|
||
<$> Database.Keys.getAssociatedFiles key
|
||
unless (null fs) $ do
|
||
ics <- mapM (populatePointerFile (Restage True) key dest) fs
|
||
Database.Keys.storeInodeCaches' key [dest] (catMaybes ics)
|
||
)
|
||
storeindirect = storeobject =<< calcRepo (gitAnnexLocation key)
|
||
|
||
{- In direct mode, the associated file's content may be locally
|
||
- modified. In that case, it's preserved. However, the content
|
||
- we're moving into the annex may be the only extant copy, so
|
||
- it's important we not lose it. So, when the key's content
|
||
- cannot be moved to any associated file, it's stored in indirect
|
||
- mode.
|
||
-}
|
||
storedirect = storedirect' storeindirect
|
||
storedirect' fallback [] = fallback
|
||
storedirect' fallback (f:fs) = do
|
||
thawContent src
|
||
v <- isAnnexLink f
|
||
if Just key == v
|
||
then do
|
||
Direct.updateInodeCache key src
|
||
replaceFile f $ liftIO . moveFile src
|
||
chmodContent f
|
||
forM_ fs $
|
||
Direct.addContentWhenNotPresent key f
|
||
else ifM (Direct.goodContent key f)
|
||
( storedirect' alreadyhave fs
|
||
, storedirect' fallback fs
|
||
)
|
||
|
||
alreadyhave = liftIO $ removeFile src
|
||
|
||
checkSecureHashes :: Key -> Annex Bool
|
||
checkSecureHashes key
|
||
| cryptographicallySecure (keyVariety key) = return True
|
||
| otherwise = ifM (annexSecureHashesOnly <$> Annex.getGitConfig)
|
||
( do
|
||
warning $ "annex.securehashesonly blocked adding " ++ formatKeyVariety (keyVariety key) ++ " key to annex objects"
|
||
return False
|
||
, return True
|
||
)
|
||
|
||
data LinkAnnexResult = LinkAnnexOk | LinkAnnexFailed | LinkAnnexNoop
|
||
|
||
{- Populates the annex object file by hard linking or copying a source
|
||
- file to it. -}
|
||
linkToAnnex :: Key -> FilePath -> Maybe InodeCache -> Annex LinkAnnexResult
|
||
linkToAnnex key src srcic = ifM (checkSecureHashes key)
|
||
( do
|
||
dest <- calcRepo (gitAnnexLocation key)
|
||
modifyContent dest $ linkAnnex To key src srcic dest Nothing
|
||
, return LinkAnnexFailed
|
||
)
|
||
|
||
{- Makes a destination file be a link or copy from the annex object. -}
|
||
linkFromAnnex :: Key -> FilePath -> Maybe FileMode -> Annex LinkAnnexResult
|
||
linkFromAnnex key dest destmode = do
|
||
src <- calcRepo (gitAnnexLocation key)
|
||
srcic <- withTSDelta (liftIO . genInodeCache src)
|
||
linkAnnex From key src srcic dest destmode
|
||
|
||
data FromTo = From | To
|
||
|
||
{- Hard links or copies from or to the annex object location.
|
||
- Updates inode cache.
|
||
-
|
||
- Freezes or thaws the destination appropriately.
|
||
-
|
||
- When a hard link is made, the annex object necessarily has to be thawed
|
||
- too. So, adding an object to the annex with a hard link can prevent
|
||
- losing the content if the source file is deleted, but does not
|
||
- guard against modifications.
|
||
-
|
||
- Nothing is done if the destination file already exists.
|
||
-}
|
||
linkAnnex :: FromTo -> Key -> FilePath -> Maybe InodeCache -> FilePath -> Maybe FileMode -> Annex LinkAnnexResult
|
||
linkAnnex _ _ _ Nothing _ _ = return LinkAnnexFailed
|
||
linkAnnex fromto key src (Just srcic) dest destmode =
|
||
withTSDelta (liftIO . genInodeCache dest) >>= \case
|
||
Just destic -> do
|
||
cs <- Database.Keys.getInodeCaches key
|
||
if null cs
|
||
then Database.Keys.addInodeCaches key [srcic, destic]
|
||
else Database.Keys.addInodeCaches key [srcic]
|
||
return LinkAnnexNoop
|
||
Nothing -> linkOrCopy key src dest destmode >>= \case
|
||
Nothing -> failed
|
||
Just r -> do
|
||
case fromto of
|
||
From -> thawContent dest
|
||
To -> case r of
|
||
Copied -> freezeContent dest
|
||
Linked -> noop
|
||
checksrcunchanged
|
||
where
|
||
failed = do
|
||
Database.Keys.addInodeCaches key [srcic]
|
||
return LinkAnnexFailed
|
||
checksrcunchanged = withTSDelta (liftIO . genInodeCache src) >>= \case
|
||
Just srcic' | compareStrong srcic srcic' -> do
|
||
destic <- withTSDelta (liftIO . genInodeCache dest)
|
||
Database.Keys.addInodeCaches key $
|
||
catMaybes [destic, Just srcic]
|
||
return LinkAnnexOk
|
||
_ -> do
|
||
liftIO $ nukeFile dest
|
||
failed
|
||
|
||
{- Removes the annex object file for a key. Lowlevel. -}
|
||
unlinkAnnex :: Key -> Annex ()
|
||
unlinkAnnex key = do
|
||
obj <- calcRepo $ gitAnnexLocation key
|
||
modifyContent obj $ do
|
||
secureErase obj
|
||
liftIO $ nukeFile obj
|
||
|
||
{- Runs an action to transfer an object's content.
|
||
-
|
||
- In some cases, it's possible for the file to change as it's being sent.
|
||
- If this happens, runs the rollback action and returns False. The
|
||
- rollback action should remove the data that was transferred.
|
||
-}
|
||
sendAnnex :: Key -> Annex () -> (FilePath -> Annex Bool) -> Annex Bool
|
||
sendAnnex key rollback sendobject = go =<< prepSendAnnex key
|
||
where
|
||
go Nothing = return False
|
||
go (Just (f, checksuccess)) = do
|
||
r <- sendobject f
|
||
ifM checksuccess
|
||
( return r
|
||
, do
|
||
rollback
|
||
return False
|
||
)
|
||
|
||
{- Returns a file that contains an object's content,
|
||
- and a check to run after the transfer is complete.
|
||
-
|
||
- When a file is unlocked (or in direct mode), it's possble for its
|
||
- content to change as it's being sent. The check detects this case
|
||
- and returns False.
|
||
-
|
||
- Note that the returned check action is, in some cases, run in the
|
||
- Annex monad of the remote that is receiving the object, rather than
|
||
- the sender. So it cannot rely on Annex state.
|
||
-}
|
||
prepSendAnnex :: Key -> Annex (Maybe (FilePath, Annex Bool))
|
||
prepSendAnnex key = withObjectLoc key indirect direct
|
||
where
|
||
indirect f = do
|
||
cache <- Database.Keys.getInodeCaches key
|
||
cache' <- if null cache
|
||
-- Since no inode cache is in the database, this
|
||
-- object is not currently unlocked. But that could
|
||
-- change while the transfer is in progress, so
|
||
-- generate an inode cache for the starting
|
||
-- content.
|
||
then maybeToList <$>
|
||
withTSDelta (liftIO . genInodeCache f)
|
||
else pure cache
|
||
return $ if null cache'
|
||
then Nothing
|
||
else Just (f, sameInodeCache f cache')
|
||
direct [] = return Nothing
|
||
direct (f:fs) = do
|
||
cache <- Direct.recordedInodeCache key
|
||
-- check that we have a good file
|
||
ifM (sameInodeCache f cache)
|
||
( return $ Just (f, sameInodeCache f cache)
|
||
, direct fs
|
||
)
|
||
|
||
{- Performs an action, passing it the location to use for a key's content.
|
||
-
|
||
- In direct mode, the associated files will be passed. But, if there are
|
||
- no associated files for a key, the indirect mode action will be
|
||
- performed instead. -}
|
||
withObjectLoc :: Key -> (FilePath -> Annex a) -> ([FilePath] -> Annex a) -> Annex a
|
||
withObjectLoc key indirect direct = ifM isDirect
|
||
( do
|
||
fs <- Direct.associatedFiles key
|
||
if null fs
|
||
then goindirect
|
||
else direct fs
|
||
, goindirect
|
||
)
|
||
where
|
||
goindirect = indirect =<< calcRepo (gitAnnexLocation key)
|
||
|
||
cleanObjectLoc :: Key -> Annex () -> Annex ()
|
||
cleanObjectLoc key cleaner = do
|
||
file <- calcRepo $ gitAnnexLocation key
|
||
void $ tryIO $ thawContentDir file
|
||
cleaner
|
||
liftIO $ removeparents file (3 :: Int)
|
||
where
|
||
removeparents _ 0 = noop
|
||
removeparents file n = do
|
||
let dir = parentDir file
|
||
maybe noop (const $ removeparents dir (n-1))
|
||
<=< catchMaybeIO $ removeDirectory dir
|
||
|
||
{- Removes a key's file from .git/annex/objects/
|
||
-}
|
||
removeAnnex :: ContentRemovalLock -> Annex ()
|
||
removeAnnex (ContentRemovalLock key) = withObjectLoc key remove removedirect
|
||
where
|
||
remove file = cleanObjectLoc key $ do
|
||
secureErase file
|
||
liftIO $ nukeFile file
|
||
g <- Annex.gitRepo
|
||
mapM_ (\f -> void $ tryIO $ resetpointer $ fromTopFilePath f g)
|
||
=<< Database.Keys.getAssociatedFiles key
|
||
Database.Keys.removeInodeCaches key
|
||
Direct.removeInodeCache key
|
||
|
||
-- Check associated pointer file for modifications, and reset if
|
||
-- it's unmodified.
|
||
resetpointer file = ifM (isUnmodified key file)
|
||
( depopulatePointerFile key file
|
||
-- Modified file, so leave it alone.
|
||
-- If it was a hard link to the annex object,
|
||
-- that object might have been frozen as part of the
|
||
-- removal process, so thaw it.
|
||
, void $ tryIO $ thawContent file
|
||
)
|
||
|
||
-- In direct mode, deletes the associated files or files, and replaces
|
||
-- them with symlinks.
|
||
removedirect fs = do
|
||
cache <- Direct.recordedInodeCache key
|
||
Direct.removeInodeCache key
|
||
mapM_ (resetfile cache) fs
|
||
|
||
resetfile cache f = whenM (Direct.sameInodeCache f cache) $ do
|
||
l <- calcRepo $ gitAnnexLink f key
|
||
secureErase f
|
||
replaceFile f $ makeAnnexLink l
|
||
|
||
{- Check if a file contains the unmodified content of the key.
|
||
-
|
||
- The expensive way to tell is to do a verification of its content.
|
||
- The cheaper way is to see if the InodeCache for the key matches the
|
||
- file. -}
|
||
isUnmodified :: Key -> FilePath -> Annex Bool
|
||
isUnmodified key f = go =<< geti
|
||
where
|
||
go Nothing = return False
|
||
go (Just fc) = cheapcheck fc <||> expensivecheck fc
|
||
cheapcheck fc = anyM (compareInodeCaches fc)
|
||
=<< Database.Keys.getInodeCaches key
|
||
expensivecheck fc = ifM (verifyKeyContent RetrievalAllKeysSecure AlwaysVerify UnVerified key f)
|
||
( do
|
||
-- The file could have been modified while it was
|
||
-- being verified. Detect that.
|
||
ifM (geti >>= maybe (return False) (compareInodeCaches fc))
|
||
( do
|
||
-- Update the InodeCache to avoid
|
||
-- performing this expensive check again.
|
||
Database.Keys.addInodeCaches key [fc]
|
||
return True
|
||
, return False
|
||
)
|
||
, return False
|
||
)
|
||
geti = withTSDelta (liftIO . genInodeCache f)
|
||
|
||
{- Moves a key out of .git/annex/objects/ into .git/annex/bad, and
|
||
- returns the file it was moved to. -}
|
||
moveBad :: Key -> Annex FilePath
|
||
moveBad key = do
|
||
src <- calcRepo $ gitAnnexLocation key
|
||
bad <- fromRepo gitAnnexBadDir
|
||
let dest = bad </> takeFileName src
|
||
createAnnexDirectory (parentDir dest)
|
||
cleanObjectLoc key $
|
||
liftIO $ moveFile src dest
|
||
logStatus key InfoMissing
|
||
return dest
|
||
|
||
data KeyLocation = InAnnex | InRepository | InAnywhere
|
||
|
||
{- List of keys whose content exists in the specified location.
|
||
|
||
- InAnnex only lists keys with content in .git/annex/objects,
|
||
- while InRepository, in direct mode, also finds keys with content
|
||
- in the work tree. InAnywhere lists all keys that have directories
|
||
- in .git/annex/objects, whether or not the content is present.
|
||
-
|
||
- Note that InRepository has to check whether direct mode files
|
||
- have goodContent.
|
||
-}
|
||
getKeysPresent :: KeyLocation -> Annex [Key]
|
||
getKeysPresent keyloc = do
|
||
direct <- isDirect
|
||
dir <- fromRepo gitAnnexObjectDir
|
||
s <- getstate direct
|
||
depth <- gitAnnexLocationDepth <$> Annex.getGitConfig
|
||
liftIO $ walk s direct depth dir
|
||
where
|
||
walk s direct depth dir = do
|
||
contents <- catchDefaultIO [] (dirContents dir)
|
||
if depth < 2
|
||
then do
|
||
contents' <- filterM (present s direct) contents
|
||
let keys = mapMaybe (fileKey . takeFileName) contents'
|
||
continue keys []
|
||
else do
|
||
let deeper = walk s direct (depth - 1)
|
||
continue [] (map deeper contents)
|
||
continue keys [] = return keys
|
||
continue keys (a:as) = do
|
||
{- Force lazy traversal with unsafeInterleaveIO. -}
|
||
morekeys <- unsafeInterleaveIO a
|
||
continue (morekeys++keys) as
|
||
|
||
inanywhere = case keyloc of
|
||
InAnywhere -> True
|
||
_ -> False
|
||
|
||
present _ _ _ | inanywhere = pure True
|
||
present _ False d = presentInAnnex d
|
||
present s True d = presentDirect s d <||> presentInAnnex d
|
||
|
||
presentInAnnex = doesFileExist . contentfile
|
||
contentfile d = d </> takeFileName d
|
||
|
||
presentDirect s d = case keyloc of
|
||
InAnnex -> return False
|
||
InRepository -> case fileKey (takeFileName d) of
|
||
Nothing -> return False
|
||
Just k -> Annex.eval s $
|
||
anyM (Direct.goodContent k) =<< Direct.associatedFiles k
|
||
InAnywhere -> return True
|
||
|
||
{- In order to run Annex monad actions within unsafeInterleaveIO,
|
||
- the current state is taken and reused. No changes made to this
|
||
- state will be preserved.
|
||
-
|
||
- As an optimsation, call inodesChanged to prime the state with
|
||
- a cached value that will be used in the call to goodContent.
|
||
-}
|
||
getstate direct = do
|
||
when direct $
|
||
void inodesChanged
|
||
Annex.getState id
|
||
|
||
{- Things to do to record changes to content when shutting down.
|
||
-
|
||
- It's acceptable to avoid committing changes to the branch,
|
||
- especially if performing a short-lived action.
|
||
-}
|
||
saveState :: Bool -> Annex ()
|
||
saveState nocommit = doSideAction $ do
|
||
Annex.Queue.flush
|
||
unless nocommit $
|
||
whenM (annexAlwaysCommit <$> Annex.getGitConfig) $
|
||
Annex.Branch.commit =<< Annex.Branch.commitMessage
|
||
|
||
{- Downloads content from any of a list of urls. -}
|
||
downloadUrl :: Key -> MeterUpdate -> [Url.URLString] -> FilePath -> Annex Bool
|
||
downloadUrl k p urls file =
|
||
-- Poll the file to handle configurations where an external
|
||
-- download command is used.
|
||
meteredFile file (Just p) k $
|
||
Url.withUrlOptions $ \uo ->
|
||
liftIO $ anyM (\u -> Url.download p u file uo) urls
|
||
|
||
{- Copies a key's content, when present, to a temp file.
|
||
- This is used to speed up some rsyncs. -}
|
||
preseedTmp :: Key -> FilePath -> Annex Bool
|
||
preseedTmp key file = go =<< inAnnex key
|
||
where
|
||
go False = return False
|
||
go True = do
|
||
ok <- copy
|
||
when ok $ thawContent file
|
||
return ok
|
||
copy = ifM (liftIO $ doesFileExist file)
|
||
( return True
|
||
, do
|
||
s <- calcRepo $ gitAnnexLocation key
|
||
liftIO $ ifM (doesFileExist s)
|
||
( copyFileExternal CopyTimeStamps s file
|
||
, return False
|
||
)
|
||
)
|
||
|
||
{- Finds files directly inside a directory like gitAnnexBadDir
|
||
- (not in subdirectories) and returns the corresponding keys. -}
|
||
dirKeys :: (Git.Repo -> FilePath) -> Annex [Key]
|
||
dirKeys dirspec = do
|
||
dir <- fromRepo dirspec
|
||
ifM (liftIO $ doesDirectoryExist dir)
|
||
( do
|
||
contents <- liftIO $ getDirectoryContents dir
|
||
files <- liftIO $ filterM doesFileExist $
|
||
map (dir </>) contents
|
||
return $ mapMaybe (fileKey . takeFileName) files
|
||
, return []
|
||
)
|
||
|
||
{- Looks in the specified directory for bad/tmp keys, and returns a list
|
||
- of those that might still have value, or might be stale and removable.
|
||
-
|
||
- Also, stale keys that can be proven to have no value
|
||
- (ie, their content is already present) are deleted.
|
||
-}
|
||
staleKeysPrune :: (Git.Repo -> FilePath) -> Bool -> Annex [Key]
|
||
staleKeysPrune dirspec nottransferred = do
|
||
contents <- dirKeys dirspec
|
||
|
||
dups <- filterM inAnnex contents
|
||
let stale = contents `exclude` dups
|
||
|
||
dir <- fromRepo dirspec
|
||
forM_ dups $ \k ->
|
||
pruneTmpWorkDirBefore (dir </> keyFile k) (liftIO . removeFile)
|
||
|
||
if nottransferred
|
||
then do
|
||
inprogress <- S.fromList . map (transferKey . fst)
|
||
<$> getTransfers
|
||
return $ filter (`S.notMember` inprogress) stale
|
||
else return stale
|
||
|
||
{- Prune the work dir associated with the specified content file,
|
||
- before performing an action that deletes the file, or moves it away.
|
||
-
|
||
- This preserves the invariant that the workdir never exists without
|
||
- the content file.
|
||
-}
|
||
pruneTmpWorkDirBefore :: FilePath -> (FilePath -> Annex a) -> Annex a
|
||
pruneTmpWorkDirBefore f action = do
|
||
let workdir = gitAnnexTmpWorkDir f
|
||
liftIO $ whenM (doesDirectoryExist workdir) $
|
||
removeDirectoryRecursive workdir
|
||
action f
|
||
|
||
{- Runs an action, passing it a temporary work directory where
|
||
- it can write files while receiving the content of a key.
|
||
-
|
||
- Preserves the invariant that the workdir never exists without the
|
||
- content file, by creating an empty content file first.
|
||
-
|
||
- On exception, or when the action returns Nothing,
|
||
- the temporary work directory is retained (unless
|
||
- empty), so anything in it can be used on resume.
|
||
-}
|
||
withTmpWorkDir :: Key -> (FilePath -> Annex (Maybe a)) -> Annex (Maybe a)
|
||
withTmpWorkDir key action = do
|
||
-- Create the object file if it does not exist. This way,
|
||
-- staleKeysPrune only has to look for object files, and can
|
||
-- clean up gitAnnexTmpWorkDir for those it finds.
|
||
obj <- prepTmp key
|
||
unlessM (liftIO $ doesFileExist obj) $ do
|
||
liftIO $ writeFile obj ""
|
||
setAnnexFilePerm obj
|
||
let tmpdir = gitAnnexTmpWorkDir obj
|
||
liftIO $ createDirectoryIfMissing True tmpdir
|
||
setAnnexDirPerm tmpdir
|
||
res <- action tmpdir
|
||
case res of
|
||
Just _ -> liftIO $ removeDirectoryRecursive tmpdir
|
||
Nothing -> liftIO $ void $ tryIO $ removeDirectory tmpdir
|
||
return res
|
||
|
||
{- Finds items in the first, smaller list, that are not
|
||
- present in the second, larger list.
|
||
-
|
||
- Constructing a single set, of the list that tends to be
|
||
- smaller, appears more efficient in both memory and CPU
|
||
- than constructing and taking the S.difference of two sets. -}
|
||
exclude :: Ord a => [a] -> [a] -> [a]
|
||
exclude [] _ = [] -- optimisation
|
||
exclude smaller larger = S.toList $ remove larger $ S.fromList smaller
|
||
where
|
||
remove a b = foldl (flip S.delete) b a
|