git-annex/Remote/Helper/Encryptable.hs
Joey Hess 8af6d2c3c5
fix encryption of content to gcrypt and git-lfs
Fix serious regression in gcrypt and encrypted git-lfs remotes.
Since version 7.20200202.7, git-annex incorrectly stored content
on those remotes without encrypting it.

Problem was, Remote.Git enumerates all git remotes, including git-lfs
and gcrypt. It then dispatches to those. So, Remote.List used the
RemoteConfigParser from Remote.Git, instead of from git-lfs or gcrypt,
and that parser does not know about encryption fields, so did not
include them in the ParsedRemoteConfig. (Also didn't include other
fields specific to those remotes, perhaps chunking etc also didn't
get through.)

To fix, had to move RemoteConfig parsing down into the generate methods
of each remote, rather than doing it in Remote.List.

And a consequence of that was that ParsedRemoteConfig had to change to
include the RemoteConfig that got parsed, so that testremote can
generate a new remote based on an existing remote.

(I would have rather fixed this just inside Remote.Git, but that was not
practical, at least not w/o re-doing work that Remote.List already did.
Big ugly mostly mechanical patch seemed preferable to making git-annex
slower.)
2020-02-26 18:05:36 -04:00

313 lines
12 KiB
Haskell

{- common functions for encryptable remotes
-
- Copyright 2011-2020 Joey Hess <id@joeyh.name>
-
- Licensed under the GNU AGPL version 3 or higher.
-}
{-# LANGUAGE FlexibleContexts, ScopedTypeVariables #-}
module Remote.Helper.Encryptable (
EncryptionIsSetup,
encryptionSetup,
noEncryptionUsed,
encryptionAlreadySetup,
encryptionConfigParsers,
parseEncryptionConfig,
remoteCipher,
remoteCipher',
embedCreds,
cipherKey,
extractCipher,
isEncrypted,
describeEncryption,
encryptionField,
highRandomQualityField
) where
import qualified Data.Map as M
import qualified Data.Set as S
import qualified "sandi" Codec.Binary.Base64 as B64
import qualified Data.ByteString as B
import Annex.Common
import Types.Remote
import Crypto
import Types.Crypto
import Types.ProposedAccepted
import qualified Annex
import Annex.SpecialRemote.Config
-- Used to ensure that encryption has been set up before trying to
-- eg, store creds in the remote config that would need to use the
-- encryption setup.
data EncryptionIsSetup = EncryptionIsSetup | NoEncryption
-- Remotes that don't use encryption can use this instead of
-- encryptionSetup.
noEncryptionUsed :: EncryptionIsSetup
noEncryptionUsed = NoEncryption
-- Using this avoids the type-safe check, so you'd better be sure
-- of what you're doing.
encryptionAlreadySetup :: EncryptionIsSetup
encryptionAlreadySetup = EncryptionIsSetup
encryptionConfigParsers :: [RemoteConfigFieldParser]
encryptionConfigParsers =
[ encryptionFieldParser
, optionalStringParser cipherField HiddenField
, optionalStringParser cipherkeysField HiddenField
, optionalStringParser pubkeysField HiddenField
, yesNoParser embedCredsField False
(FieldDesc "embed credentials into git repository")
, macFieldParser
, optionalStringParser (Accepted "keyid")
(FieldDesc "gpg key id")
, optionalStringParser (Accepted "keyid+")
(FieldDesc "add additional gpg key")
, optionalStringParser (Accepted "keyid-")
(FieldDesc "remove gpg key")
, highRandomQualityFieldParser
]
encryptionConfigs :: S.Set RemoteConfigField
encryptionConfigs = S.fromList (map parserForField encryptionConfigParsers)
-- Parse only encryption fields, ignoring all others.
parseEncryptionConfig :: RemoteConfig -> Either String ParsedRemoteConfig
parseEncryptionConfig c = parseRemoteConfig
(M.restrictKeys c encryptionConfigs)
(RemoteConfigParser encryptionConfigParsers Nothing)
encryptionFieldParser :: RemoteConfigFieldParser
encryptionFieldParser = RemoteConfigFieldParser
{ parserForField = encryptionField
, valueParser = \v c -> Just . RemoteConfigValue
<$> parseEncryptionMethod (fmap fromProposedAccepted v) c
, fieldDesc = FieldDesc "how to encrypt data stored in the special remote"
, valueDesc = Just $ ValueDesc $
intercalate " or " (M.keys encryptionMethods)
}
encryptionMethods :: M.Map String EncryptionMethod
encryptionMethods = M.fromList
[ ("none", NoneEncryption)
, ("shared", SharedEncryption)
, ("hybrid", HybridEncryption)
, ("pubkey", PubKeyEncryption)
, ("sharedpubkey", SharedPubKeyEncryption)
]
parseEncryptionMethod :: Maybe String -> RemoteConfig -> Either String EncryptionMethod
parseEncryptionMethod (Just s) _ = case M.lookup s encryptionMethods of
Just em -> Right em
Nothing -> Left badEncryptionMethod
-- Hybrid encryption is the default when a keyid is specified without
-- an encryption field, or when there's a cipher already but no encryption
-- field.
parseEncryptionMethod Nothing c
| M.member (Accepted "keyid") c || M.member cipherField c = Right HybridEncryption
| otherwise = Left badEncryptionMethod
badEncryptionMethod :: String
badEncryptionMethod = "Specify " ++ intercalate " or "
(map ((fromProposedAccepted encryptionField ++ "=") ++)
(M.keys encryptionMethods))
++ "."
highRandomQualityField :: RemoteConfigField
highRandomQualityField = Accepted "highRandomQuality"
highRandomQualityFieldParser :: RemoteConfigFieldParser
highRandomQualityFieldParser = RemoteConfigFieldParser
{ parserForField = highRandomQualityField
, valueParser = \v _c -> Just . RemoteConfigValue
<$> parseHighRandomQuality (fmap fromProposedAccepted v)
, fieldDesc = HiddenField
, valueDesc = Nothing
}
parseHighRandomQuality :: Maybe String -> Either String Bool
parseHighRandomQuality Nothing = Right True
parseHighRandomQuality (Just "false") = Right False
parseHighRandomQuality (Just "true") = Right True
parseHighRandomQuality _ = Left "expected highRandomQuality=true/false"
macFieldParser :: RemoteConfigFieldParser
macFieldParser = RemoteConfigFieldParser
{ parserForField = macField
, valueParser = \v _c -> Just . RemoteConfigValue <$> parseMac v
, fieldDesc = FieldDesc "how to encrypt filenames used on the remote"
, valueDesc = Just $ ValueDesc $
intercalate " or " (M.keys macMap)
}
parseMac :: Maybe (ProposedAccepted String) -> Either String Mac
parseMac Nothing = Right defaultMac
parseMac (Just (Accepted s)) = Right $ fromMaybe defaultMac (readMac s)
parseMac (Just (Proposed s)) = case readMac s of
Just mac -> Right mac
Nothing -> Left "bad mac value"
{- Encryption setup for a remote. The user must specify whether to use
- an encryption key, or not encrypt. An encrypted cipher is created, or is
- updated to be accessible to an additional encryption key. Or the user
- could opt to use a shared cipher, which is stored unencrypted. -}
encryptionSetup :: RemoteConfig -> RemoteGitConfig -> Annex (RemoteConfig, EncryptionIsSetup)
encryptionSetup c gc = do
pc <- either giveup return $ parseEncryptionConfig c
cmd <- gpgCmd <$> Annex.getGitConfig
maybe (genCipher pc cmd) (updateCipher pc cmd) (extractCipher pc)
where
-- The type of encryption
encryption = parseEncryptionMethod (fromProposedAccepted <$> M.lookup encryptionField c) c
-- Generate a new cipher, depending on the chosen encryption scheme
genCipher pc cmd = case encryption of
Right NoneEncryption -> return (c, NoEncryption)
Right SharedEncryption -> encsetup $ genSharedCipher cmd
Right HybridEncryption -> encsetup $ genEncryptedCipher cmd (pc, gc) key Hybrid
Right PubKeyEncryption -> encsetup $ genEncryptedCipher cmd (pc, gc) key PubKey
Right SharedPubKeyEncryption -> encsetup $ genSharedPubKeyCipher cmd key
Left err -> giveup err
key = maybe (giveup "Specify keyid=...") fromProposedAccepted $
M.lookup (Accepted "keyid") c
newkeys = maybe [] (\k -> [(True,fromProposedAccepted k)]) (M.lookup (Accepted "keyid+") c) ++
maybe [] (\k -> [(False,fromProposedAccepted k)]) (M.lookup (Accepted "keyid-") c)
cannotchange = giveup "Cannot set encryption type of existing remotes."
-- Update an existing cipher if possible.
updateCipher pc cmd v = case v of
SharedCipher _ | encryption == Right SharedEncryption ->
return (c', EncryptionIsSetup)
EncryptedCipher _ variant _ | sameasencryption variant ->
use "encryption update" $ updateCipherKeyIds cmd (pc, gc) newkeys v
SharedPubKeyCipher _ _ ->
use "encryption update" $ updateCipherKeyIds cmd (pc, gc) newkeys v
_ -> cannotchange
sameasencryption variant = case encryption of
Right HybridEncryption -> variant == Hybrid
Right PubKeyEncryption -> variant == PubKey
Right _ -> False
Left _ -> True
encsetup a = use "encryption setup" . a =<< highRandomQuality
use m a = do
showNote m
cipher <- liftIO a
showNote (describeCipher cipher)
return (storeCipher cipher c', EncryptionIsSetup)
highRandomQuality = ifM (Annex.getState Annex.fast)
( return False
, case parseHighRandomQuality (fromProposedAccepted <$> M.lookup highRandomQualityField c) of
Left err -> giveup err
Right v -> return v
)
c' = foldr M.delete c
-- Remove configs that are only used in here to generate
-- the encryption keys, and should not be stored in
-- remote.log.
-- Older versions used to remove 'encryption' as well, since
-- it was redundant; we now need to keep it for
-- public-key encryption, hence we leave it on newer
-- remotes (while being backward-compatible).
(map Accepted ["keyid", "keyid+", "keyid-", "highRandomQuality"])
remoteCipher :: ParsedRemoteConfig -> RemoteGitConfig -> Annex (Maybe Cipher)
remoteCipher c gc = fmap fst <$> remoteCipher' c gc
{- Gets encryption Cipher. The decrypted Ciphers are cached in the Annex
- state. -}
remoteCipher' :: ParsedRemoteConfig -> RemoteGitConfig -> Annex (Maybe (Cipher, StorableCipher))
remoteCipher' c gc = go $ extractCipher c
where
go Nothing = return Nothing
go (Just encipher) = do
cache <- Annex.getState Annex.ciphers
case M.lookup encipher cache of
Just cipher -> return $ Just (cipher, encipher)
Nothing -> do
cmd <- gpgCmd <$> Annex.getGitConfig
cipher <- liftIO $ decryptCipher cmd (c, gc) encipher
Annex.changeState (\s -> s { Annex.ciphers = M.insert encipher cipher cache })
return $ Just (cipher, encipher)
{- Checks if the remote's config allows storing creds in the remote's config.
-
- embedcreds=yes allows this, and embedcreds=no prevents it.
-
- If not set, the default is to only store creds when it's surely safe:
- When gpg encryption is used and the creds are encrypted using it.
- Not when a shared cipher is used.
-}
embedCreds :: ParsedRemoteConfig -> Bool
embedCreds c = case getRemoteConfigValue embedCredsField c of
Just v -> v
Nothing -> case (getRemoteConfigValue cipherkeysField c, getRemoteConfigValue cipherField c) of
(Just (_ :: ProposedAccepted String), Just (_ :: ProposedAccepted String)) -> True
_ -> False
{- Gets encryption Cipher, and key encryptor. -}
cipherKey :: ParsedRemoteConfig -> RemoteGitConfig -> Annex (Maybe (Cipher, EncKey))
cipherKey c gc = fmap make <$> remoteCipher c gc
where
make ciphertext = (ciphertext, encryptKey mac ciphertext)
mac = fromMaybe defaultMac $ getRemoteConfigValue macField c
{- Stores an StorableCipher in a remote's configuration. -}
storeCipher :: StorableCipher -> RemoteConfig -> RemoteConfig
storeCipher cip = case cip of
(SharedCipher t) -> addcipher t
(EncryptedCipher t _ ks) -> addcipher t . storekeys ks cipherkeysField
(SharedPubKeyCipher t ks) -> addcipher t . storekeys ks pubkeysField
where
addcipher t = M.insert cipherField (Accepted (toB64bs t))
storekeys (KeyIds l) n = M.insert n (Accepted (intercalate "," l))
{- Extracts an StorableCipher from a remote's configuration. -}
extractCipher :: ParsedRemoteConfig -> Maybe StorableCipher
extractCipher c = case (getRemoteConfigValue cipherField c,
(getRemoteConfigValue cipherkeysField c <|> getRemoteConfigValue pubkeysField c),
getRemoteConfigValue encryptionField c) of
(Just t, Just ks, Just HybridEncryption) ->
Just $ EncryptedCipher (fromB64bs t) Hybrid (readkeys ks)
(Just t, Just ks, Just PubKeyEncryption) ->
Just $ EncryptedCipher (fromB64bs t) PubKey (readkeys ks)
(Just t, Just ks, Just SharedPubKeyEncryption) ->
Just $ SharedPubKeyCipher (fromB64bs t) (readkeys ks)
(Just t, Nothing, Just SharedEncryption) ->
Just $ SharedCipher (fromB64bs t)
_ -> Nothing
where
readkeys = KeyIds . splitc ','
isEncrypted :: ParsedRemoteConfig -> Bool
isEncrypted = isJust . extractCipher
describeEncryption :: ParsedRemoteConfig -> String
describeEncryption c = case extractCipher c of
Nothing -> "none"
Just cip -> nameCipher cip ++ " (" ++ describeCipher cip ++ ")"
nameCipher :: StorableCipher -> String
nameCipher (SharedCipher _) = "shared"
nameCipher (EncryptedCipher _ PubKey _) = "pubkey"
nameCipher (EncryptedCipher _ Hybrid _) = "hybrid"
nameCipher (SharedPubKeyCipher _ _) = "sharedpubkey"
describeCipher :: StorableCipher -> String
describeCipher c = case c of
(SharedCipher _) -> "encryption key stored in git repository"
(EncryptedCipher _ _ ks) -> showkeys ks
(SharedPubKeyCipher _ ks) -> showkeys ks
where
showkeys (KeyIds { keyIds = ks }) = "to gpg keys: " ++ unwords ks
{- Not using Utility.Base64 because these "Strings" are really
- bags of bytes and that would convert to unicode and not round-trip
- cleanly. -}
toB64bs :: String -> String
toB64bs = w82s . B.unpack . B64.encode . B.pack . s2w8
fromB64bs :: String -> String
fromB64bs s = either (const bad) (w82s . B.unpack) (B64.decode $ B.pack $ s2w8 s)
where
bad = error "bad base64 encoded data"