git-annex/Annex/View.hs
Joey Hess cee12f6a2f
multiple -m
sync, assist, import: Allow -m option to be specified multiple times, to
provide additional paragraphs for the commit message.

The option parser didn't allow multiple -m before, so there is no risk of
behavior change breaking something that was for some reason using multiple
-m already.

Pass through to git commands, so that the method used to assemble the
paragrahs is whatever git does. Which might conceivably change in the
future.

Note that git commit-tree has supported -m since git 1.7.7. commitTree
was probably not using it since it predates that version. Since the
configure script prevents building git-annex with git older than 2.1,
there is no risk that it's not supported now.

Sponsored-by: Nicholas Golder-Manning on Patreon
2024-03-27 15:58:27 -04:00

636 lines
24 KiB
Haskell
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{- metadata based branch views
-
- Copyright 2014-2023 Joey Hess <id@joeyh.name>
-
- Licensed under the GNU AGPL version 3 or higher.
-}
{-# LANGUAGE OverloadedStrings, PackageImports #-}
module Annex.View where
import Annex.Common
import Annex.View.ViewedFile
import Types.View
import Types.AdjustedBranch
import Types.MetaData
import Annex.MetaData
import qualified Annex
import qualified Annex.Branch
import qualified Git
import qualified Git.DiffTree as DiffTree
import qualified Git.Branch
import qualified Git.LsFiles
import qualified Git.LsTree
import qualified Git.Ref
import Git.CatFile
import Git.UpdateIndex
import Git.Sha
import Git.Types
import Git.FilePath
import Annex.WorkTree
import Annex.GitOverlay
import Annex.Link
import Annex.CatFile
import Annex.Concurrent
import Annex.Content.Presence
import Logs
import Logs.MetaData
import Logs.View
import Utility.Glob
import Types.Command
import CmdLine.Action
import qualified Utility.RawFilePath as R
import qualified Data.Text as T
import qualified Data.ByteString as B
import qualified Data.Set as S
import qualified Data.Map as M
import qualified System.FilePath.ByteString as P
import Control.Concurrent.Async
import "mtl" Control.Monad.Writer
{- Each visible ViewFilter in a view results in another level of
- subdirectory nesting. When a file matches multiple ways, it will appear
- in multiple subdirectories. This means there is a bit of an exponential
- blowup with a single file appearing in a crazy number of places!
-
- Capping the view size to 5 is reasonable; why wants to dig
- through 5+ levels of subdirectories to find anything?
-}
viewTooLarge :: View -> Bool
viewTooLarge view = visibleViewSize view > 5
visibleViewSize :: View -> Int
visibleViewSize = length . filter viewVisible . viewComponents
{- Parses field=value, field!=value, field?=value, tag, !tag, and ?tag
-
- Note that the field may not be a legal metadata field name,
- but it's let through anyway.
- This is useful when matching on directory names with spaces,
- which are not legal MetaFields.
-}
parseViewParam :: ViewUnset -> String -> (MetaField, ViewFilter)
parseViewParam vu s = case separate (== '=') s of
('!':tag, []) | not (null tag) ->
( tagMetaField
, mkExcludeValues tag
)
('?':tag, []) | not (null tag) ->
( tagMetaField
, mkFilterOrUnsetValues tag
)
(tag, []) ->
( tagMetaField
, mkFilterValues tag
)
(field, wanted)
| end field == "!" ->
( mkMetaFieldUnchecked (T.pack (beginning field))
, mkExcludeValues wanted
)
| end field == "?" ->
( mkMetaFieldUnchecked (T.pack (beginning field))
, mkFilterOrUnsetValues wanted
)
| otherwise ->
( mkMetaFieldUnchecked (T.pack field)
, mkFilterValues wanted
)
where
mkExcludeValues = ExcludeValues . S.singleton . toMetaValue . encodeBS
mkFilterValues v
| any (`elem` v) ['*', '?'] = FilterGlob v
| otherwise = FilterValues $ S.singleton $ toMetaValue $ encodeBS v
mkFilterOrUnsetValues v
| any (`elem` v) ['*', '?'] = FilterGlobOrUnset v vu
| otherwise = FilterValuesOrUnset (S.singleton $ toMetaValue $ encodeBS v) vu
data ViewChange = Unchanged | Narrowing | Widening
deriving (Ord, Eq, Show)
{- Updates a view, adding new fields to filter on (Narrowing),
- or allowing new values in an existing field (Widening). -}
refineView :: View -> [(MetaField, ViewFilter)] -> (View, ViewChange)
refineView origview = checksize . calc Unchanged origview
where
calc c v [] = (v, c)
calc c v ((f, vf):rest) =
let (v', c') = refine v f vf
in calc (max c c') v' rest
refine view field vf
| field `elem` map viewField (viewComponents view) =
let (components', viewchanges) = runWriter $
mapM (\c -> updateViewComponent c field vf) (viewComponents view)
viewchange = if field `elem` map viewField (viewComponents origview)
then maximum viewchanges
else Narrowing
in (view { viewComponents = components' }, viewchange)
| otherwise =
let component = mkViewComponent field vf
view' = view { viewComponents = component : viewComponents view }
in (view', Narrowing)
checksize r@(v, _)
| viewTooLarge v = giveup $ "View is too large (" ++ show (visibleViewSize v) ++ " levels of subdirectories)"
| otherwise = r
updateViewComponent :: ViewComponent -> MetaField -> ViewFilter -> Writer [ViewChange] ViewComponent
updateViewComponent c field vf
| viewField c == field = do
let (newvf, viewchange) = combineViewFilter (viewFilter c) vf
tell [viewchange]
return $ mkViewComponent field newvf
| otherwise = return c
{- Adds an additional filter to a view. This can only result in narrowing
- the view. Multivalued filters are added in non-visible form. -}
filterView :: View -> [(MetaField, ViewFilter)] -> View
filterView v vs = v { viewComponents = viewComponents f' ++ viewComponents v}
where
f = fst $ refineView (v {viewComponents = []}) vs
f' = f { viewComponents = map toinvisible (viewComponents f) }
toinvisible c = c { viewVisible = False }
{- Combine old and new ViewFilters, yielding a result that matches
- either old+new, or only new. Which depends on the types of things
- being combined.
-}
combineViewFilter :: ViewFilter -> ViewFilter -> (ViewFilter, ViewChange)
combineViewFilter old@(FilterValues olds) (FilterValues news)
| combined == old = (combined, Unchanged)
| otherwise = (combined, Widening)
where
combined = FilterValues (S.union olds news)
combineViewFilter old@(ExcludeValues olds) (ExcludeValues news)
| combined == old = (combined, Unchanged)
| otherwise = (combined, Narrowing)
where
combined = ExcludeValues (S.union olds news)
{- If we have FilterValues and change to a FilterGlob,
- it's always a widening change, because the glob could match other
- values. OTOH, going the other way, it's a Narrowing change if the old
- glob matches all the new FilterValues. -}
combineViewFilter (FilterValues _) newglob@(FilterGlob _) =
(newglob, Widening)
combineViewFilter (FilterGlob oldglob) new@(FilterValues s)
| all (matchGlob (compileGlob oldglob CaseInsensitive (GlobFilePath False)) . decodeBS . fromMetaValue) (S.toList s) = (new, Narrowing)
| otherwise = (new, Widening)
{- With two globs, the old one is discarded, and the new one is used.
- We can tell if that's a narrowing change by checking if the old
- glob matches the new glob. For example, "*" matches "foo*",
- so that's narrowing. While "f?o" does not match "f??", so that's
- widening. -}
combineViewFilter (FilterGlob old) newglob@(FilterGlob new)
| old == new = (newglob, Unchanged)
| matchGlob (compileGlob old CaseInsensitive (GlobFilePath False)) new = (newglob, Narrowing)
| otherwise = (newglob, Widening)
{- Combining FilterValuesOrUnset and FilterGlobOrUnset with FilterValues
- and FilterGlob maintains the OrUnset if the second parameter has it,
- and is otherwise the same as combining without OrUnset, except that
- eliminating the OrUnset can be narrowing, and adding it can be widening. -}
combineViewFilter old@(FilterValuesOrUnset olds _) (FilterValuesOrUnset news newvu)
| combined == old = (combined, Unchanged)
| otherwise = (combined, Widening)
where
combined = FilterValuesOrUnset (S.union olds news) newvu
combineViewFilter (FilterValues olds) (FilterValuesOrUnset news vu) =
(combined, Widening)
where
combined = FilterValuesOrUnset (S.union olds news) vu
combineViewFilter old@(FilterValuesOrUnset olds _) (FilterValues news)
| combined == old = (combined, Narrowing)
| otherwise = (combined, Widening)
where
combined = FilterValues (S.union olds news)
combineViewFilter (FilterValuesOrUnset _ _) newglob@(FilterGlob _) =
(newglob, Widening)
combineViewFilter (FilterGlob _) new@(FilterValuesOrUnset _ _) =
(new, Widening)
combineViewFilter (FilterValues _) newglob@(FilterGlobOrUnset _ _) =
(newglob, Widening)
combineViewFilter (FilterValuesOrUnset _ _) newglob@(FilterGlobOrUnset _ _) =
(newglob, Widening)
combineViewFilter (FilterGlobOrUnset oldglob _) new@(FilterValues _) =
combineViewFilter (FilterGlob oldglob) new
combineViewFilter (FilterGlobOrUnset oldglob _) new@(FilterValuesOrUnset _ _) =
let (_, viewchange) = combineViewFilter (FilterGlob oldglob) new
in (new, viewchange)
combineViewFilter (FilterGlobOrUnset old _) newglob@(FilterGlobOrUnset new _)
| old == new = (newglob, Unchanged)
| matchGlob (compileGlob old CaseInsensitive (GlobFilePath False)) new = (newglob, Narrowing)
| otherwise = (newglob, Widening)
combineViewFilter (FilterGlob _) newglob@(FilterGlobOrUnset _ _) =
(newglob, Widening)
combineViewFilter (FilterGlobOrUnset _ _) newglob@(FilterGlob _) =
(newglob, Narrowing)
{- There is not a way to filter a value and also apply an exclude. So:
- When adding an exclude to a filter, use only the exclude.
- When adding a filter to an exclude, use only the filter. -}
combineViewFilter (FilterGlob _) new@(ExcludeValues _) = (new, Narrowing)
combineViewFilter (ExcludeValues _) new@(FilterGlob _) = (new, Widening)
combineViewFilter (FilterValues _) new@(ExcludeValues _) = (new, Narrowing)
combineViewFilter (ExcludeValues _) new@(FilterValues _) = (new, Widening)
combineViewFilter (FilterValuesOrUnset _ _) new@(ExcludeValues _) = (new, Narrowing)
combineViewFilter (ExcludeValues _) new@(FilterValuesOrUnset _ _) = (new, Widening)
combineViewFilter (FilterGlobOrUnset _ _) new@(ExcludeValues _) = (new, Narrowing)
combineViewFilter (ExcludeValues _) new@(FilterGlobOrUnset _ _) = (new, Widening)
{- Generates views for a file from a branch, based on its metadata
- and the filename used in the branch.
-
- Note that a file may appear multiple times in a view, when it
- has multiple matching values for a MetaField used in the View.
-
- Of course if its MetaData does not match the View, it won't appear at
- all.
-
- Note that for efficiency, it's useful to partially
- evaluate this function with the view parameter and reuse
- the result. The globs in the view will then be compiled and memoized.
-}
viewedFiles :: View -> MkViewedFile -> FilePath -> MetaData -> [ViewedFile]
viewedFiles view =
let matchers = map viewComponentMatcher (viewComponents view)
in \mkviewedfile file metadata ->
let matches = map (\m -> m metadata) matchers
in if any isNothing matches
then []
else
let paths = pathProduct $
map (map toviewpath) (visible matches)
in if null paths
then [mkviewedfile file]
else map (</> mkviewedfile file) paths
where
visible = map (fromJust . snd) .
filter (viewVisible . fst) .
zip (viewComponents view)
toviewpath (MatchingMetaValue v) = toViewPath v
toviewpath (MatchingUnset v) = toViewPath (toMetaValue (encodeBS v))
data MatchingValue = MatchingMetaValue MetaValue | MatchingUnset String
{- Checks if metadata matches a ViewComponent filter, and if so
- returns the value, or values that match. Self-memoizing on ViewComponent. -}
viewComponentMatcher :: ViewComponent -> (MetaData -> Maybe [MatchingValue])
viewComponentMatcher viewcomponent = \metadata ->
matcher Nothing (viewFilter viewcomponent)
(currentMetaDataValues metafield metadata)
where
metafield = viewField viewcomponent
matcher matchunset (FilterValues s) =
\values -> setmatches matchunset $ S.intersection s values
matcher matchunset (FilterGlob glob) =
let cglob = compileGlob glob CaseInsensitive (GlobFilePath False)
in \values -> setmatches matchunset $
S.filter (matchGlob cglob . decodeBS . fromMetaValue) values
matcher _ (ExcludeValues excludes) =
\values ->
if S.null (S.intersection values excludes)
then Just []
else Nothing
matcher _ (FilterValuesOrUnset s (ViewUnset u)) =
matcher (Just [MatchingUnset u]) (FilterValues s)
matcher _ (FilterGlobOrUnset glob (ViewUnset u)) =
matcher (Just [MatchingUnset u]) (FilterGlob glob)
setmatches matchunset s
| S.null s = matchunset
| otherwise = Just $
map MatchingMetaValue (S.toList s)
-- This is '', a unicode character that displays the same as '/' but is
-- not it. It is encoded using the filesystem encoding, which allows it
-- to be used even when not in a unicode capable locale.
pseudoSlash :: String
pseudoSlash = "\56546\56456\56469"
-- And this is '╲' similarly.
pseudoBackslash :: String
pseudoBackslash = "\56546\56469\56498"
-- And this is '﹕' similarly.
pseudoColon :: String
pseudoColon = "\56559\56505\56469"
toViewPath :: MetaValue -> FilePath
toViewPath = escapepseudo [] . decodeBS . fromMetaValue
where
escapepseudo s ('/':cs) = escapepseudo (pseudoSlash:s) cs
escapepseudo s ('\\':cs) = escapepseudo (pseudoBackslash:s) cs
escapepseudo s (':':cs) = escapepseudo (pseudoColon:s) cs
escapepseudo s ('%':cs) = escapepseudo ("%%":s) cs
escapepseudo s (c1:c2:c3:cs)
| [c1,c2,c3] == pseudoSlash = escapepseudo ("%":pseudoSlash:s) cs
| [c1,c2,c3] == pseudoBackslash = escapepseudo ("%":pseudoBackslash:s) cs
| [c1,c2,c3] == pseudoColon = escapepseudo ("%":pseudoColon:s) cs
| otherwise = escapepseudo ([c1]:s) (c2:c3:cs)
escapepseudo s (c:cs) = escapepseudo ([c]:s) cs
escapepseudo s [] = concat (reverse s)
fromViewPath :: FilePath -> MetaValue
fromViewPath = toMetaValue . encodeBS . deescapepseudo []
where
deescapepseudo s ('%':escapedc:cs) = deescapepseudo ([escapedc]:s) cs
deescapepseudo s (c1:c2:c3:cs)
| [c1,c2,c3] == pseudoSlash = deescapepseudo ("/":s) cs
| [c1,c2,c3] == pseudoBackslash = deescapepseudo ("\\":s) cs
| [c1,c2,c3] == pseudoColon = deescapepseudo (":":s) cs
| otherwise = deescapepseudo ([c1]:s) (c2:c3:cs)
deescapepseudo s cs = concat (reverse (cs:s))
prop_viewPath_roundtrips :: MetaValue -> Bool
prop_viewPath_roundtrips v = fromViewPath (toViewPath v) == v
pathProduct :: [[FilePath]] -> [FilePath]
pathProduct [] = []
pathProduct (l:ls) = foldl combinel l ls
where
combinel xs ys = [combine x y | x <- xs, y <- ys]
{- Extracts the metadata from a ViewedFile, based on the view that was used
- to construct it.
-
- Derived metadata is excluded.
-}
fromView :: View -> ViewedFile -> MetaData
fromView view f = MetaData $ m `M.difference` derived
where
m = M.fromList $ map convfield $
filter (not . isviewunset) (zip visible values)
visible = filter viewVisible (viewComponents view)
paths = splitDirectories (dropFileName f)
values = map (S.singleton . fromViewPath) paths
MetaData derived = getViewedFileMetaData f
convfield (vc, v) = (viewField vc, v)
-- When a directory is the one used to hold files that don't
-- have the metadata set, don't include it in the MetaData.
isviewunset (vc, v) = case viewFilter vc of
FilterValues {} -> False
FilterGlob {} -> False
ExcludeValues {} -> False
FilterValuesOrUnset _ (ViewUnset vu) -> isviewunset' vu v
FilterGlobOrUnset _ (ViewUnset vu) -> isviewunset' vu v
isviewunset' vu v = S.member (fromViewPath vu) v
{- Constructing a view that will match arbitrary metadata, and applying
- it to a file yields a set of ViewedFile which all contain the same
- MetaFields that were present in the input metadata
- (excluding fields that are not visible). -}
prop_view_roundtrips :: AssociatedFile -> MetaData -> Bool -> Bool
prop_view_roundtrips (AssociatedFile Nothing) _ _ = True
prop_view_roundtrips (AssociatedFile (Just f)) metadata visible = or
[ B.null (P.takeFileName f) && B.null (P.takeDirectory f)
, viewTooLarge view
, all hasfields (viewedFiles view (viewedFileFromReference' Nothing) (fromRawFilePath f) metadata)
]
where
view = View (Git.Ref "foo") $
map (\(mf, mv) -> ViewComponent mf (FilterValues $ S.filter (not . B.null . fromMetaValue) mv) visible)
(fromMetaData metadata)
visiblefields = sort (map viewField $ filter viewVisible (viewComponents view))
hasfields fv = sort (map fst (fromMetaData (fromView view fv))) == visiblefields
{- A directory foo/bar/baz/ is turned into metadata fields
- /=foo, foo/=bar, foo/bar/=baz.
-
- Note that this may generate MetaFields that legalField rejects.
- This is necessary to have a 1:1 mapping between directory names and
- fields. So this MetaData cannot safely be serialized. -}
getDirMetaData :: FilePath -> MetaData
getDirMetaData d = MetaData $ M.fromList $ zip fields values
where
dirs = splitDirectories d
fields = map (mkMetaFieldUnchecked . T.pack . addTrailingPathSeparator . joinPath)
(inits dirs)
values = map (S.singleton . toMetaValue . encodeBS . fromMaybe "" . headMaybe)
(tails dirs)
getWorkTreeMetaData :: FilePath -> MetaData
getWorkTreeMetaData = getDirMetaData . dropFileName
getViewedFileMetaData :: FilePath -> MetaData
getViewedFileMetaData = getDirMetaData . dirFromViewedFile . takeFileName
{- Applies a view to the currently checked out branch, generating a new
- branch for the view.
-}
applyView :: View -> Maybe Adjustment -> Annex Git.Branch
applyView v ma = do
gc <- Annex.getGitConfig
applyView' (viewedFileFromReference gc) getWorkTreeMetaData v ma
{- Generates a new branch for a View, which must be a more narrow
- version of the View originally used to generate the currently
- checked out branch. That is, it must match a subset of the files
- in view, not any others.
-}
narrowView :: View -> Maybe Adjustment -> Annex Git.Branch
narrowView = applyView' viewedFileReuse getViewedFileMetaData
{- Go through each staged file.
- If the file is not annexed, skip it, unless it's a dotfile in the top,
- or a file in a dotdir in the top.
- Look up the metadata of annexed files, and generate any ViewedFiles,
- and stage them.
-}
applyView' :: MkViewedFile -> (FilePath -> MetaData) -> View -> Maybe Adjustment -> Annex Git.Branch
applyView' mkviewedfile getfilemetadata view madj = do
top <- fromRepo Git.repoPath
(l, clean) <- inRepo $ Git.LsFiles.inRepoDetails [] [top]
applyView'' mkviewedfile getfilemetadata view madj l clean $
\(f, sha, mode) -> do
topf <- inRepo (toTopFilePath f)
k <- lookupKey f
return (topf, sha, toTreeItemType mode, k)
genViewBranch view madj
applyView''
:: MkViewedFile
-> (FilePath -> MetaData)
-> View
-> Maybe Adjustment
-> [t]
-> IO Bool
-> (t -> Annex (TopFilePath, Sha, Maybe TreeItemType, Maybe Key))
-> Annex ()
applyView'' mkviewedfile getfilemetadata view madj l clean conv = do
viewg <- withNewViewIndex gitRepo
withUpdateIndex viewg $ \uh -> do
g <- Annex.gitRepo
gc <- Annex.getGitConfig
-- Streaming the metadata like this is an optimisation.
catObjectStream g $ \mdfeeder mdcloser mdreader -> do
tid <- liftIO . async =<< forkState
(getmetadata gc mdfeeder mdcloser l)
process uh mdreader
join (liftIO (wait tid))
liftIO $ void clean
where
genviewedfiles = viewedFiles view mkviewedfile -- enables memoization
getmetadata _ _ mdcloser [] = liftIO mdcloser
getmetadata gc mdfeeder mdcloser (t:ts) = do
v@(topf, _sha, _treeitemtype, mkey) <- conv t
let feed mdlogf = liftIO $ mdfeeder
(v, Git.Ref.branchFileRef Annex.Branch.fullname mdlogf)
case mkey of
Just key -> feed (metaDataLogFile gc key)
Nothing
-- Handle toplevel dotfiles that are not
-- annexed files by feeding through a query
-- for dummy metadata. Calling
-- Git.UpdateIndex.streamUpdateIndex'
-- here would race with process's calls
-- to it.
| "." `B.isPrefixOf` getTopFilePath topf ->
feed "dummy"
| otherwise -> noop
getmetadata gc mdfeeder mdcloser ts
process uh mdreader = liftIO mdreader >>= \case
Just ((topf, _, mtreeitemtype, Just k), mdlog) -> do
let metadata = maybe emptyMetaData parseCurrentMetaData mdlog
let f = fromRawFilePath $ getTopFilePath topf
let metadata' = getfilemetadata f `unionMetaData` metadata
forM_ (genviewedfiles f metadata') $ \fv -> do
f' <- fromRepo (fromTopFilePath $ asTopFilePath $ toRawFilePath fv)
stagefile uh f' k mtreeitemtype
process uh mdreader
Just ((topf, sha, Just treeitemtype, Nothing), _) -> do
liftIO $ Git.UpdateIndex.streamUpdateIndex' uh $
pureStreamer $ updateIndexLine sha treeitemtype topf
process uh mdreader
Just _ -> process uh mdreader
Nothing -> return ()
stagefile uh f k mtreeitemtype = case madj of
Nothing -> stagesymlink uh f k
Just (LinkAdjustment UnlockAdjustment) ->
stagepointerfile uh f k mtreeitemtype
Just (LinkPresentAdjustment UnlockPresentAdjustment) ->
ifM (inAnnex k)
( stagepointerfile uh f k mtreeitemtype
, stagesymlink uh f k
)
Just (PresenceAdjustment HideMissingAdjustment (Just UnlockAdjustment)) ->
whenM (inAnnex k) $
stagepointerfile uh f k mtreeitemtype
Just (PresenceAdjustment HideMissingAdjustment _) ->
whenM (inAnnex k) $
stagesymlink uh f k
_ -> stagesymlink uh f k
stagesymlink uh f k = do
linktarget <- calcRepo (gitAnnexLink f k)
sha <- hashSymlink linktarget
liftIO . Git.UpdateIndex.streamUpdateIndex' uh
=<< inRepo (Git.UpdateIndex.stageSymlink f sha)
stagepointerfile uh f k mtreeitemtype = do
let treeitemtype = if mtreeitemtype == Just TreeExecutable
then TreeExecutable
else TreeFile
sha <- hashPointerFile k
liftIO . Git.UpdateIndex.streamUpdateIndex' uh
=<< inRepo (Git.UpdateIndex.stageFile sha treeitemtype f)
{- Updates the current view with any changes that have been made to its
- parent branch or the metadata since the view was created or last updated.
-
- When there were changes, returns a ref to a commit for the updated view.
- Does not update the view branch with it.
-
- This is not very optimised. An incremental update would be possible to
- implement and would be faster, but more complicated.
-}
updateView :: View -> Maybe Adjustment -> Annex (Maybe Git.Ref)
updateView view madj = do
(l, clean) <- inRepo $ Git.LsTree.lsTree
Git.LsTree.LsTreeRecursive
(Git.LsTree.LsTreeLong True)
(viewParentBranch view)
gc <- Annex.getGitConfig
applyView'' (viewedFileFromReference gc) getWorkTreeMetaData view madj l clean $
\ti -> do
let ref = Git.Ref.branchFileRef (viewParentBranch view)
(getTopFilePath (Git.LsTree.file ti))
k <- case Git.LsTree.size ti of
Nothing -> catKey ref
Just sz -> catKey' ref sz
return
( (Git.LsTree.file ti)
, (Git.LsTree.sha ti)
, (toTreeItemType (Git.LsTree.mode ti))
, k
)
oldcommit <- inRepo $ Git.Ref.sha (branchView view madj)
oldtree <- maybe (pure Nothing) (inRepo . Git.Ref.tree) oldcommit
newtree <- withViewIndex $ inRepo Git.Branch.writeTree
if oldtree /= Just newtree
then Just <$> do
cmode <- annexCommitMode <$> Annex.getGitConfig
let msg = "updated " ++ fromRef (branchView view madj)
let parent = catMaybes [oldcommit]
inRepo (Git.Branch.commitTree cmode [msg] parent newtree)
else return Nothing
{- Diff between currently checked out branch and staged changes, and
- update metadata to reflect the changes that are being committed to the
- view.
-
- Adding a file to a directory adds the metadata represented by
- that directory to the file, and removing a file from a directory
- removes the metadata.
-
- Note that removes must be handled before adds. This is so
- that moving a file from x/foo/ to x/bar/ adds back the metadata for x.
-}
withViewChanges :: (ViewedFile -> Key -> CommandStart) -> (ViewedFile -> Key -> CommandStart) -> Annex ()
withViewChanges addmeta removemeta = do
(diffs, cleanup) <- inRepo $ DiffTree.diffIndex Git.Ref.headRef
forM_ diffs handleremovals
forM_ diffs handleadds
void $ liftIO cleanup
where
handleremovals item
| DiffTree.srcsha item `notElem` nullShas =
handlechange item removemeta
=<< catKey (DiffTree.srcsha item)
| otherwise = noop
handleadds item
| DiffTree.dstsha item `notElem` nullShas =
handlechange item addmeta
=<< catKey (DiffTree.dstsha item)
| otherwise = noop
handlechange item a = maybe noop
(void . commandAction . a (fromRawFilePath $ getTopFilePath $ DiffTree.file item))
{- Runs an action using the view index file.
- Note that the file does not necessarily exist, or can contain
- info staged for an old view. -}
withViewIndex :: Annex a -> Annex a
withViewIndex = withIndexFile ViewIndexFile . const
withNewViewIndex :: Annex a -> Annex a
withNewViewIndex a = do
liftIO . removeWhenExistsWith R.removeLink =<< fromRepo gitAnnexViewIndex
withViewIndex a
{- Generates a branch for a view, using the view index file
- to make a commit to the view branch. The view branch is not
- checked out, but entering it will display the view. -}
genViewBranch :: View -> Maybe Adjustment -> Annex Git.Branch
genViewBranch view madj = withViewIndex $ do
let branch = branchView view madj
cmode <- annexCommitMode <$> Annex.getGitConfig
void $ inRepo $ Git.Branch.commit cmode True (fromRef branch) branch []
return branch
withCurrentView :: (View -> Maybe Adjustment -> Annex a) -> Annex a
withCurrentView a = maybe (giveup "Not in a view.") (uncurry a) =<< currentView