git-annex/Crypto.hs
Joey Hess c41ca6c832
convert StorableCipher to ByteString
This allows getting rid of the ugly and error prone handling of
"bag of bytes" String in Remote.Helper.Encryptable.
Avoiding breakage like that dealt with by commit
9862d64bf9

And allows converting Utility.Gpg to use ByteString for IO, which is
a welcome change.

Tested the new git-annex interoperability with old, using all 3
encryption= types.

Sponsored-By: the NIH-funded NICEMAN (ReproNim TR&D3) project
2023-11-01 14:39:49 -04:00

269 lines
9.9 KiB
Haskell

{- git-annex crypto
-
- Currently using gpg; could later be modified to support different
- crypto backends if necessary.
-
- Copyright 2011-2023 Joey Hess <id@joeyh.name>
-
- Licensed under the GNU AGPL version 3 or higher.
-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE Rank2Types #-}
module Crypto (
EncryptionMethod(..),
Cipher,
KeyIds(..),
EncKey,
StorableCipher(..),
genEncryptedCipher,
genSharedCipher,
genSharedPubKeyCipher,
updateCipherKeyIds,
decryptCipher,
decryptCipher',
encryptKey,
isEncKey,
feedFile,
feedBytes,
readBytes,
readBytesStrictly,
encrypt,
decrypt,
LensGpgEncParams(..),
prop_HmacSha1WithCipher_sane
) where
import qualified Data.ByteString as S
import qualified Data.ByteString.Lazy as L
import Control.Monad.IO.Class
import Annex.Common
import qualified Utility.Gpg as Gpg
import Types.Crypto
import Types.Remote
import Types.Key
import Annex.SpecialRemote.Config
import qualified Data.ByteString.Short as S (toShort)
{- The beginning of a Cipher is used for MAC'ing; the remainder is used
- as the GPG symmetric encryption passphrase when using the hybrid
- scheme. Note that the cipher itself is base-64 encoded, hence the
- string is longer than 'cipherSize': 683 characters, padded to 684.
-
- The 256 first characters that feed the MAC represent at best 192
- bytes of entropy. However that's more than enough for both the
- default MAC algorithm, namely HMAC-SHA1, and the "strongest"
- currently supported, namely HMAC-SHA512, which respectively need
- (ideally) 64 and 128 bytes of entropy.
-
- The remaining characters (320 bytes of entropy) is enough for GnuPG's
- symmetric cipher; unlike weaker public key crypto, the key does not
- need to be too large.
-}
cipherBeginning :: Int
cipherBeginning = 256
cipherSize :: Int
cipherSize = 512
cipherPassphrase :: Cipher -> S.ByteString
cipherPassphrase (Cipher c) = S.drop cipherBeginning c
cipherPassphrase (MacOnlyCipher _) = giveup "MAC-only cipher"
cipherMac :: Cipher -> S.ByteString
cipherMac (Cipher c) = S.take cipherBeginning c
cipherMac (MacOnlyCipher c) = c
{- Creates a new Cipher, encrypted to the specified key id. -}
genEncryptedCipher :: LensGpgEncParams c => Gpg.GpgCmd -> c -> Gpg.KeyId -> EncryptedCipherVariant -> Bool -> IO StorableCipher
genEncryptedCipher cmd c keyid variant highQuality = do
ks <- Gpg.findPubKeys cmd keyid
random <- Gpg.genRandom cmd highQuality size
encryptCipher cmd c (mkCipher random) variant ks
where
(mkCipher, size) = case variant of
Hybrid -> (Cipher, cipherSize) -- used for MAC + symmetric
PubKey -> (MacOnlyCipher, cipherBeginning) -- only used for MAC
{- Creates a new, shared Cipher. -}
genSharedCipher :: Gpg.GpgCmd -> Bool -> IO StorableCipher
genSharedCipher cmd highQuality =
SharedCipher <$> Gpg.genRandom cmd highQuality cipherSize
{- Creates a new, shared Cipher, and looks up the gpg public key that will
- be used for encrypting content. -}
genSharedPubKeyCipher :: Gpg.GpgCmd -> Gpg.KeyId -> Bool -> IO StorableCipher
genSharedPubKeyCipher cmd keyid highQuality = do
ks <- Gpg.findPubKeys cmd keyid
random <- Gpg.genRandom cmd highQuality cipherSize
return $ SharedPubKeyCipher random ks
{- Updates an existing Cipher, making changes to its keyids.
-
- When the Cipher is encrypted, re-encrypts it. -}
updateCipherKeyIds :: LensGpgEncParams encparams => Gpg.GpgCmd -> encparams -> [(Bool, Gpg.KeyId)] -> StorableCipher -> IO StorableCipher
updateCipherKeyIds _ _ _ SharedCipher{} = giveup "Cannot update shared cipher"
updateCipherKeyIds _ _ [] c = return c
updateCipherKeyIds cmd encparams changes encipher@(EncryptedCipher _ variant ks) = do
ks' <- updateCipherKeyIds' cmd changes ks
cipher <- decryptCipher cmd encparams encipher
encryptCipher cmd encparams cipher variant ks'
updateCipherKeyIds cmd _ changes (SharedPubKeyCipher cipher ks) =
SharedPubKeyCipher cipher <$> updateCipherKeyIds' cmd changes ks
updateCipherKeyIds' :: Gpg.GpgCmd -> [(Bool, Gpg.KeyId)] -> KeyIds -> IO KeyIds
updateCipherKeyIds' cmd changes (KeyIds ks) = do
dropkeys <- listKeyIds [ k | (False, k) <- changes ]
forM_ dropkeys $ \k -> unless (k `elem` ks) $
giveup $ "Key " ++ k ++ " was not present; cannot remove."
addkeys <- listKeyIds [ k | (True, k) <- changes ]
let ks' = (addkeys ++ ks) \\ dropkeys
when (null ks') $
giveup "Cannot remove the last key."
return $ KeyIds ks'
where
listKeyIds = concat <$$> mapM (keyIds <$$> Gpg.findPubKeys cmd)
{- Encrypts a Cipher to the specified KeyIds. -}
encryptCipher :: LensGpgEncParams c => Gpg.GpgCmd -> c -> Cipher -> EncryptedCipherVariant -> KeyIds -> IO StorableCipher
encryptCipher cmd c cip variant (KeyIds ks) = do
-- gpg complains about duplicate recipient keyids
let ks' = nub $ sort ks
let params = concat
[ getGpgEncParamsBase c
, Gpg.pkEncTo ks'
, Gpg.stdEncryptionParams False
]
encipher <- Gpg.pipeStrict cmd params cipher
return $ EncryptedCipher encipher variant (KeyIds ks')
where
cipher = case cip of
Cipher x -> x
MacOnlyCipher x -> x
{- Decrypting an EncryptedCipher is expensive; the Cipher should be cached. -}
decryptCipher :: LensGpgEncParams c => Gpg.GpgCmd -> c -> StorableCipher -> IO Cipher
decryptCipher cmd c cip = decryptCipher' cmd Nothing c cip
decryptCipher' :: LensGpgEncParams c => Gpg.GpgCmd -> Maybe [(String, String)] -> c -> StorableCipher -> IO Cipher
decryptCipher' _ _ _ (SharedCipher t) = return $ Cipher t
decryptCipher' _ _ _ (SharedPubKeyCipher t _) = return $ MacOnlyCipher t
decryptCipher' cmd environ c (EncryptedCipher t variant _) =
mkCipher <$> Gpg.pipeStrict' cmd params environ t
where
mkCipher = case variant of
Hybrid -> Cipher
PubKey -> MacOnlyCipher
params = Param "--decrypt" : getGpgDecParams c
type EncKey = Key -> Key
{- Generates an encrypted form of a Key. The encryption does not need to be
- reversible, nor does it need to be the same type of encryption used
- on content. It does need to be repeatable. -}
encryptKey :: Mac -> Cipher -> EncKey
encryptKey mac c k = mkKey $ \d -> d
{ keyName = S.toShort $ encodeBS $ macWithCipher mac c (serializeKey' k)
, keyVariety = OtherKey $
encryptedBackendNamePrefix <> encodeBS (showMac mac)
}
encryptedBackendNamePrefix :: S.ByteString
encryptedBackendNamePrefix = "GPG"
isEncKey :: Key -> Bool
isEncKey k = case fromKey keyVariety k of
OtherKey s -> encryptedBackendNamePrefix `S.isPrefixOf` s
_ -> False
type Feeder = Handle -> IO ()
type Reader m a = Handle -> m a
feedFile :: FilePath -> Feeder
feedFile f h = L.hPut h =<< L.readFile f
feedBytes :: L.ByteString -> Feeder
feedBytes = flip L.hPut
readBytes :: (MonadIO m) => (L.ByteString -> m a) -> Reader m a
readBytes a h = liftIO (L.hGetContents h) >>= a
readBytesStrictly :: (MonadIO m) => (S.ByteString -> m a) -> Reader m a
readBytesStrictly a h = liftIO (S.hGetContents h) >>= a
{- Runs a Feeder action, that generates content that is symmetrically
- encrypted with the Cipher (unless it is empty, in which case
- public-key encryption is used) using the given gpg options, and then
- read by the Reader action.
-
- Note that the Reader must fully consume gpg's input before returning.
-}
encrypt :: (MonadIO m, MonadMask m, LensGpgEncParams c) => Gpg.GpgCmd -> c -> Cipher -> Feeder -> Reader m a -> m a
encrypt cmd c cipher = case cipher of
Cipher{} -> Gpg.feedRead cmd (params ++ Gpg.stdEncryptionParams True) $
cipherPassphrase cipher
MacOnlyCipher{} -> Gpg.feedRead' cmd $ params ++ Gpg.stdEncryptionParams False
where
params = getGpgEncParams c
{- Runs a Feeder action, that generates content that is decrypted with the
- Cipher (or using a private key if the Cipher is empty), and read by the
- Reader action.
-
- Note that the Reader must fully consume gpg's input before returning.
- -}
decrypt :: (MonadIO m, MonadMask m, LensGpgEncParams c) => Gpg.GpgCmd -> c -> Cipher -> Feeder -> Reader m a -> m a
decrypt cmd c cipher = case cipher of
Cipher{} -> Gpg.feedRead cmd params $ cipherPassphrase cipher
MacOnlyCipher{} -> Gpg.feedRead' cmd params
where
params = Param "--decrypt" : getGpgDecParams c
macWithCipher :: Mac -> Cipher -> S.ByteString -> String
macWithCipher mac c = macWithCipher' mac (cipherMac c)
macWithCipher' :: Mac -> S.ByteString -> S.ByteString -> String
macWithCipher' mac c s = calcMac mac c s
{- Ensure that macWithCipher' returns the same thing forevermore. -}
prop_HmacSha1WithCipher_sane :: Bool
prop_HmacSha1WithCipher_sane = known_good == macWithCipher' HmacSha1 "foo" "bar"
where
known_good = "46b4ec586117154dacd49d664e5d63fdc88efb51"
class LensGpgEncParams a where
{- Base parameters for encrypting. Does not include specification
- of recipient keys. -}
getGpgEncParamsBase :: a -> [CommandParam]
{- Parameters for encrypting. When the remote is configured to use
- public-key encryption, includes specification of recipient keys. -}
getGpgEncParams :: a -> [CommandParam]
{- Parameters for decrypting. -}
getGpgDecParams :: a -> [CommandParam]
{- Extract the GnuPG options from a pair of a Remote Config and a Remote
- Git Config. -}
instance LensGpgEncParams (ParsedRemoteConfig, RemoteGitConfig) where
getGpgEncParamsBase (_c,gc) = map Param (remoteAnnexGnupgOptions gc)
getGpgEncParams (c,gc) = getGpgEncParamsBase (c,gc) ++
{- When the remote is configured to use public-key encryption,
- look up the recipient keys and add them to the option list. -}
case getRemoteConfigValue encryptionField c of
Just PubKeyEncryption ->
Gpg.pkEncTo $ maybe [] (splitc ',') $
getRemoteConfigValue cipherkeysField c
Just SharedPubKeyEncryption ->
Gpg.pkEncTo $ maybe [] (splitc ',') $
getRemoteConfigValue pubkeysField c
_ -> []
getGpgDecParams (_c,gc) = map Param (remoteAnnexGnupgDecryptOptions gc)
{- Extract the GnuPG options from a Remote. -}
instance LensGpgEncParams (RemoteA a) where
getGpgEncParamsBase r = getGpgEncParamsBase (config r, gitconfig r)
getGpgEncParams r = getGpgEncParams (config r, gitconfig r)
getGpgDecParams r = getGpgDecParams (config r, gitconfig r)