git-annex/Utility/LockPool/STM.hs
Joey Hess ef3ab0769e
close pid lock only once no threads use it
This fixes a FD leak when annex.pidlock is set and -J is used. Also, it
fixes bugs where the pid lock file got deleted because one thread was
done with it, while another thread was still holding it open.

The LockPool now has two distinct types of resources,
one is per-LockHandle and is used for file Handles, which get closed
when the associated LockHandle is closed. The other one is per lock
file, and gets closed when no more LockHandles use that lock file,
including other shared locks of the same file.

That latter kind is used for the pid lock file, so it's opened by the
first thread to use a lock, and closed when the last thread closes a lock.

In practice, this means that eg git-annex get of several files opens and
closes the pidlock file a few times per file. While with -J5 it will open
the pidlock file, process a number of files, until all the threads happen to
finish together, at which point the pidlock file gets closed, and then
that repeats. So in either case, another process still gets a chance to
take the pidlock.

registerPostRelease has a rather intricate dance, there are fine-grained
STM locks, a STM lock of the pidfile itself, and the actual pidlock file
on disk that are all resolved in stages by it.

Sponsored-by: Dartmouth College's Datalad project
2021-12-06 15:01:39 -04:00

179 lines
6.3 KiB
Haskell

{- STM implementation of lock pools.
-
- Copyright 2015-2021 Joey Hess <id@joeyh.name>
-
- License: BSD-2-clause
-}
module Utility.LockPool.STM (
LockPool,
lockPool,
LockFile,
LockMode(..),
LockHandle,
FirstLock(..),
FirstLockSemVal(..),
waitTakeLock,
tryTakeLock,
getLockStatus,
releaseLock,
CloseLockFile,
registerCloseLockFile,
registerPostReleaseLock,
) where
import Utility.Monad
import System.IO.Unsafe (unsafePerformIO)
import System.FilePath.ByteString (RawFilePath)
import qualified Data.Map.Strict as M
import Control.Concurrent.STM
import Control.Exception
type LockFile = RawFilePath
data LockMode = LockExclusive | LockShared
deriving (Eq)
-- This TMVar is full when the handle is open, and is emptied when it's
-- closed.
type LockHandle = TMVar (LockPool, LockFile, CloseLockFile)
-- When a shared lock is taken, this will only be true for the first
-- process, not subsequent processes. The first process should
-- fill the FirstLockSem after doing any IO actions to finish lock setup
-- and subsequent processes can block on that getting filled to know
-- when the lock is fully set up.
data FirstLock = FirstLock Bool FirstLockSem
type FirstLockSem = TMVar FirstLockSemVal
data FirstLockSemVal = FirstLockSemWaited Bool | FirstLockSemTried Bool
type LockCount = Integer
-- Action that closes the underlying lock file. When this is used
-- in a LockHandle, it closes a resource that is specific to that
-- LockHandle (such as eg a file handle), but does not release
-- any other shared locks. When this is used in a LockStatus,
-- it closes a resource that should only be closed when there are no
-- other shared locks.
type CloseLockFile = IO ()
data LockStatus = LockStatus LockMode LockCount FirstLockSem CloseLockFile
-- This TMVar is normally kept full.
type LockPool = TMVar (M.Map LockFile LockStatus)
-- A shared global variable for the lockPool. Avoids callers needing to
-- maintain state for this implementation detail.
{-# NOINLINE lockPool #-}
lockPool :: LockPool
lockPool = unsafePerformIO (newTMVarIO M.empty)
-- Updates the LockPool, blocking as necessary if another thread is holding
-- a conflicting lock.
--
-- Note that when a shared lock is held, an exclusive lock will block.
-- While that blocking is happening, another call to this function to take
-- the same shared lock should not be blocked on the exclusive lock.
-- Keeping the whole Map in a TMVar accomplishes this, at the expense of
-- sometimes retrying after unrelated changes in the map.
waitTakeLock :: LockPool -> LockFile -> LockMode -> STM (LockHandle, FirstLock)
waitTakeLock pool file mode = maybe retry return =<< tryTakeLock pool file mode
-- Avoids blocking if another thread is holding a conflicting lock.
tryTakeLock :: LockPool -> LockFile -> LockMode -> STM (Maybe (LockHandle, FirstLock))
tryTakeLock pool file mode = do
m <- takeTMVar pool
let success firstlock v = do
putTMVar pool (M.insert file v m)
tmv <- newTMVar (pool, file, noop)
return (Just (tmv, firstlock))
case M.lookup file m of
Just (LockStatus mode' n firstlocksem postreleaselock)
| mode == LockShared && mode' == LockShared -> do
fl@(FirstLock _ firstlocksem') <- if n == 0
then FirstLock True <$> newEmptyTMVar
else pure (FirstLock False firstlocksem)
success fl $ LockStatus mode (succ n) firstlocksem' postreleaselock
| n > 0 -> do
putTMVar pool m
return Nothing
_ -> do
firstlocksem <- newEmptyTMVar
success (FirstLock True firstlocksem) $
LockStatus mode 1 firstlocksem noop
-- Call after waitTakeLock or tryTakeLock, to register a CloseLockFile
-- action to run when releasing the lock. This action should only
-- close the lock file associated with the LockHandle, while
-- leaving any other shared locks of the same file open.
registerCloseLockFile :: LockHandle -> CloseLockFile -> STM ()
registerCloseLockFile h closelockfile = do
(p, f, c) <- takeTMVar h
putTMVar h (p, f, c >> closelockfile)
-- Register an action that should be run only once a lock has been
-- released. When there are multiple shared locks of the same file,
-- the action will only be run after all are released.
registerPostReleaseLock :: LockHandle -> CloseLockFile -> STM ()
registerPostReleaseLock h postreleaselock = do
(p, f, _) <- readTMVar h
m <- takeTMVar p
case M.lookup f m of
Nothing -> putTMVar p m
Just (LockStatus mode cnt firstlocksem c) -> do
let c' = c >> postreleaselock
putTMVar p $ M.insert f (LockStatus mode cnt firstlocksem c') m
-- Checks if a lock is being held. If it's held by the current process,
-- runs the getdefault action; otherwise runs the checker action.
--
-- Note that the lock pool is left empty while the checker action is run.
-- This allows checker actions that open/close files, and so would be in
-- danger of conflicting with locks created at the same time this is
-- running. With the lock pool empty, anything that attempts
-- to take a lock will block, avoiding that race.
getLockStatus :: LockPool -> LockFile -> IO v -> IO v -> IO v
getLockStatus pool file getdefault checker = do
v <- atomically $ do
m <- takeTMVar pool
let threadlocked = case M.lookup file m of
Just (LockStatus _ n _ _) | n > 0 -> True
_ -> False
if threadlocked
then do
putTMVar pool m
return Nothing
else return $ Just $ atomically $ putTMVar pool m
case v of
Nothing -> getdefault
Just restore -> bracket_ (return ()) restore checker
-- Releases the lock. When it is a shared lock, it may remain locked by
-- other LockHandles.
--
-- Note that the lock pool is left empty while the CloseLockFile action
-- is run, to avoid race with another thread trying to open the same lock
-- file. However, the pool is full again when the PostReleaseLock action
-- runs.
releaseLock :: LockHandle -> IO ()
releaseLock h = go =<< atomically (tryTakeTMVar h)
where
go (Just (pool, file, closelockfile)) = do
(m, postreleaselock) <- atomically $ do
m <- takeTMVar pool
return $ case M.lookup file m of
Just (LockStatus mode n firstlocksem postreleaselock)
| n == 1 -> (M.delete file m, postreleaselock)
| otherwise ->
(M.insert file (LockStatus mode (pred n) firstlocksem postreleaselock) m, noop)
Nothing -> (m, noop)
() <- closelockfile
atomically $ putTMVar pool m
-- This action may access the pool, so run it only
-- after the pool is restored.
postreleaselock
-- The LockHandle was already closed.
go Nothing = return ()