git-annex/Crypto.hs
Joey Hess 40ecf58d4b
update licenses from GPL to AGPL
This does not change the overall license of the git-annex program, which
was already AGPL due to a number of sources files being AGPL already.

Legally speaking, I'm adding a new license under which these files are
now available; I already released their current contents under the GPL
license. Now they're dual licensed GPL and AGPL. However, I intend
for all my future changes to these files to only be released under the
AGPL license, and I won't be tracking the dual licensing status, so I'm
simply changing the license statement to say it's AGPL.

(In some cases, others wrote parts of the code of a file and released it
under the GPL; but in all cases I have contributed a significant portion
of the code in each file and it's that code that is getting the AGPL
license; the GPL license of other contributors allows combining with
AGPL code.)
2019-03-13 15:48:14 -04:00

249 lines
9.2 KiB
Haskell

{- git-annex crypto
-
- Currently using gpg; could later be modified to support different
- crypto backends if neccessary.
-
- Copyright 2011-2016 Joey Hess <id@joeyh.name>
-
- Licensed under the GNU AGPL version 3 or higher.
-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE Rank2Types #-}
module Crypto (
Cipher,
KeyIds(..),
EncKey,
StorableCipher(..),
genEncryptedCipher,
genSharedCipher,
genSharedPubKeyCipher,
updateCipherKeyIds,
decryptCipher,
encryptKey,
isEncKey,
feedFile,
feedBytes,
readBytes,
encrypt,
decrypt,
LensGpgEncParams(..),
prop_HmacSha1WithCipher_sane
) where
import qualified Data.ByteString as S
import qualified Data.ByteString.Lazy as L
import Data.ByteString.UTF8 (fromString)
import qualified Data.Map as M
import Control.Monad.IO.Class
import Annex.Common
import qualified Utility.Gpg as Gpg
import Types.Crypto
import Types.Remote
import Types.Key
{- The beginning of a Cipher is used for MAC'ing; the remainder is used
- as the GPG symmetric encryption passphrase when using the hybrid
- scheme. Note that the cipher itself is base-64 encoded, hence the
- string is longer than 'cipherSize': 683 characters, padded to 684.
-
- The 256 first characters that feed the MAC represent at best 192
- bytes of entropy. However that's more than enough for both the
- default MAC algorithm, namely HMAC-SHA1, and the "strongest"
- currently supported, namely HMAC-SHA512, which respectively need
- (ideally) 64 and 128 bytes of entropy.
-
- The remaining characters (320 bytes of entropy) is enough for GnuPG's
- symetric cipher; unlike weaker public key crypto, the key does not
- need to be too large.
-}
cipherBeginning :: Int
cipherBeginning = 256
cipherSize :: Int
cipherSize = 512
cipherPassphrase :: Cipher -> String
cipherPassphrase (Cipher c) = drop cipherBeginning c
cipherPassphrase (MacOnlyCipher _) = error "MAC-only cipher"
cipherMac :: Cipher -> String
cipherMac (Cipher c) = take cipherBeginning c
cipherMac (MacOnlyCipher c) = c
{- Creates a new Cipher, encrypted to the specified key id. -}
genEncryptedCipher :: LensGpgEncParams c => Gpg.GpgCmd -> c -> Gpg.KeyId -> EncryptedCipherVariant -> Bool -> IO StorableCipher
genEncryptedCipher cmd c keyid variant highQuality = do
ks <- Gpg.findPubKeys cmd keyid
random <- Gpg.genRandom cmd highQuality size
encryptCipher cmd c (mkCipher random) variant ks
where
(mkCipher, size) = case variant of
Hybrid -> (Cipher, cipherSize) -- used for MAC + symmetric
PubKey -> (MacOnlyCipher, cipherBeginning) -- only used for MAC
{- Creates a new, shared Cipher. -}
genSharedCipher :: Gpg.GpgCmd -> Bool -> IO StorableCipher
genSharedCipher cmd highQuality =
SharedCipher <$> Gpg.genRandom cmd highQuality cipherSize
{- Creates a new, shared Cipher, and looks up the gpg public key that will
- be used for encrypting content. -}
genSharedPubKeyCipher :: Gpg.GpgCmd -> Gpg.KeyId -> Bool -> IO StorableCipher
genSharedPubKeyCipher cmd keyid highQuality = do
ks <- Gpg.findPubKeys cmd keyid
random <- Gpg.genRandom cmd highQuality cipherSize
return $ SharedPubKeyCipher random ks
{- Updates an existing Cipher, making changes to its keyids.
-
- When the Cipher is encrypted, re-encrypts it. -}
updateCipherKeyIds :: LensGpgEncParams encparams => Gpg.GpgCmd -> encparams -> [(Bool, Gpg.KeyId)] -> StorableCipher -> IO StorableCipher
updateCipherKeyIds _ _ _ SharedCipher{} = giveup "Cannot update shared cipher"
updateCipherKeyIds _ _ [] c = return c
updateCipherKeyIds cmd encparams changes encipher@(EncryptedCipher _ variant ks) = do
ks' <- updateCipherKeyIds' cmd changes ks
cipher <- decryptCipher cmd encparams encipher
encryptCipher cmd encparams cipher variant ks'
updateCipherKeyIds cmd _ changes (SharedPubKeyCipher cipher ks) =
SharedPubKeyCipher cipher <$> updateCipherKeyIds' cmd changes ks
updateCipherKeyIds' :: Gpg.GpgCmd -> [(Bool, Gpg.KeyId)] -> KeyIds -> IO KeyIds
updateCipherKeyIds' cmd changes (KeyIds ks) = do
dropkeys <- listKeyIds [ k | (False, k) <- changes ]
forM_ dropkeys $ \k -> unless (k `elem` ks) $
giveup $ "Key " ++ k ++ " was not present; cannot remove."
addkeys <- listKeyIds [ k | (True, k) <- changes ]
let ks' = (addkeys ++ ks) \\ dropkeys
when (null ks') $
giveup "Cannot remove the last key."
return $ KeyIds ks'
where
listKeyIds = concat <$$> mapM (keyIds <$$> Gpg.findPubKeys cmd)
{- Encrypts a Cipher to the specified KeyIds. -}
encryptCipher :: LensGpgEncParams c => Gpg.GpgCmd -> c -> Cipher -> EncryptedCipherVariant -> KeyIds -> IO StorableCipher
encryptCipher cmd c cip variant (KeyIds ks) = do
-- gpg complains about duplicate recipient keyids
let ks' = nub $ sort ks
let params = concat
[ getGpgEncParamsBase c
, Gpg.pkEncTo ks'
, Gpg.stdEncryptionParams False
]
encipher <- Gpg.pipeStrict cmd params cipher
return $ EncryptedCipher encipher variant (KeyIds ks')
where
cipher = case cip of
Cipher x -> x
MacOnlyCipher x -> x
{- Decrypting an EncryptedCipher is expensive; the Cipher should be cached. -}
decryptCipher :: LensGpgEncParams c => Gpg.GpgCmd -> c -> StorableCipher -> IO Cipher
decryptCipher _ _ (SharedCipher t) = return $ Cipher t
decryptCipher _ _ (SharedPubKeyCipher t _) = return $ MacOnlyCipher t
decryptCipher cmd c (EncryptedCipher t variant _) =
mkCipher <$> Gpg.pipeStrict cmd params t
where
mkCipher = case variant of
Hybrid -> Cipher
PubKey -> MacOnlyCipher
params = Param "--decrypt" : getGpgDecParams c
type EncKey = Key -> Key
{- Generates an encrypted form of a Key. The encryption does not need to be
- reversable, nor does it need to be the same type of encryption used
- on content. It does need to be repeatable. -}
encryptKey :: Mac -> Cipher -> EncKey
encryptKey mac c k = stubKey
{ keyName = encodeBS (macWithCipher mac c (serializeKey k))
, keyVariety = OtherKey $
encryptedBackendNamePrefix <> encodeBS (showMac mac)
}
encryptedBackendNamePrefix :: S.ByteString
encryptedBackendNamePrefix = "GPG"
isEncKey :: Key -> Bool
isEncKey k = case keyVariety k of
OtherKey s -> encryptedBackendNamePrefix `S.isPrefixOf` s
_ -> False
type Feeder = Handle -> IO ()
type Reader m a = Handle -> m a
feedFile :: FilePath -> Feeder
feedFile f h = L.hPut h =<< L.readFile f
feedBytes :: L.ByteString -> Feeder
feedBytes = flip L.hPut
readBytes :: (MonadIO m) => (L.ByteString -> m a) -> Reader m a
readBytes a h = liftIO (L.hGetContents h) >>= a
{- Runs a Feeder action, that generates content that is symmetrically
- encrypted with the Cipher (unless it is empty, in which case
- public-key encryption is used) using the given gpg options, and then
- read by the Reader action. -}
encrypt :: (MonadIO m, MonadMask m, LensGpgEncParams c) => Gpg.GpgCmd -> c -> Cipher -> Feeder -> Reader m a -> m a
encrypt cmd c cipher = case cipher of
Cipher{} -> Gpg.feedRead cmd (params ++ Gpg.stdEncryptionParams True) $
cipherPassphrase cipher
MacOnlyCipher{} -> Gpg.pipeLazy cmd $ params ++ Gpg.stdEncryptionParams False
where
params = getGpgEncParams c
{- Runs a Feeder action, that generates content that is decrypted with the
- Cipher (or using a private key if the Cipher is empty), and read by the
- Reader action. -}
decrypt :: (MonadIO m, MonadMask m, LensGpgEncParams c) => Gpg.GpgCmd -> c -> Cipher -> Feeder -> Reader m a -> m a
decrypt cmd c cipher = case cipher of
Cipher{} -> Gpg.feedRead cmd params $ cipherPassphrase cipher
MacOnlyCipher{} -> Gpg.pipeLazy cmd params
where
params = Param "--decrypt" : getGpgDecParams c
macWithCipher :: Mac -> Cipher -> String -> String
macWithCipher mac c = macWithCipher' mac (cipherMac c)
macWithCipher' :: Mac -> String -> String -> String
macWithCipher' mac c s = calcMac mac (fromString c) (fromString s)
{- Ensure that macWithCipher' returns the same thing forevermore. -}
prop_HmacSha1WithCipher_sane :: Bool
prop_HmacSha1WithCipher_sane = known_good == macWithCipher' HmacSha1 "foo" "bar"
where
known_good = "46b4ec586117154dacd49d664e5d63fdc88efb51"
class LensGpgEncParams a where
{- Base parameters for encrypting. Does not include specification
- of recipient keys. -}
getGpgEncParamsBase :: a -> [CommandParam]
{- Parameters for encrypting. When the remote is configured to use
- public-key encryption, includes specification of recipient keys. -}
getGpgEncParams :: a -> [CommandParam]
{- Parameters for decrypting. -}
getGpgDecParams :: a -> [CommandParam]
{- Extract the GnuPG options from a pair of a Remote Config and a Remote
- Git Config. -}
instance LensGpgEncParams (RemoteConfig, RemoteGitConfig) where
getGpgEncParamsBase (_c,gc) = map Param (remoteAnnexGnupgOptions gc)
getGpgEncParams (c,gc) = getGpgEncParamsBase (c,gc) ++
{- When the remote is configured to use public-key encryption,
- look up the recipient keys and add them to the option list. -}
case M.lookup "encryption" c of
Just "pubkey" -> Gpg.pkEncTo $ maybe [] (splitc ',') $ M.lookup "cipherkeys" c
Just "sharedpubkey" -> Gpg.pkEncTo $ maybe [] (splitc ',') $ M.lookup "pubkeys" c
_ -> []
getGpgDecParams (_c,gc) = map Param (remoteAnnexGnupgDecryptOptions gc)
{- Extract the GnuPG options from a Remote. -}
instance LensGpgEncParams (RemoteA a) where
getGpgEncParamsBase r = getGpgEncParamsBase (config r, gitconfig r)
getGpgEncParams r = getGpgEncParams (config r, gitconfig r)
getGpgDecParams r = getGpgDecParams (config r, gitconfig r)