git-annex/Key.hs
Joey Hess 89e1a05a8f
Fix mangling of --json output of utf-8 characters when not running in a utf-8 locale
As long as all code imports Utility.Aeson rather than Data.Aeson,
and no Strings that may contain utf-8 characters are used for eg, object
keys via T.pack, this is guaranteed to fix the problem everywhere that
git-annex generates json.

It's kind of annoying to need to wrap ToJSON with a ToJSON', especially
since every data type that has a ToJSON instance has to be ported over.
However, that only took 50 lines of code, which is worth it to ensure full
coverage. I initially tried an alternative approach of a newtype FileEncoded,
which had to be used everywhere a String was fed into aeson, and chasing
down all the sites would have been far too hard. Did consider creating an
intentionally overlapping instance ToJSON String, and letting ghc fail
to build anything that passed in a String, but am not sure that wouldn't
pollute some library that git-annex depends on that happens to use ToJSON
String internally.

This commit was supported by the NSF-funded DataLad project.
2018-04-16 16:21:21 -04:00

181 lines
5.2 KiB
Haskell

{- git-annex Keys
-
- Copyright 2011-2017 Joey Hess <id@joeyh.name>
-
- Licensed under the GNU GPL version 3 or higher.
-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Key (
Key(..),
AssociatedFile(..),
stubKey,
key2file,
file2key,
nonChunkKey,
chunkKeyOffset,
isChunkKey,
isKeyPrefix,
prop_isomorphic_key_encode,
prop_isomorphic_key_decode
) where
import Data.Char
import qualified Data.Text as T
import Common
import Types.Key
import Utility.QuickCheck
import Utility.Bloom
import Utility.Aeson
import qualified Utility.SimpleProtocol as Proto
stubKey :: Key
stubKey = Key
{ keyName = ""
, keyVariety = OtherKey ""
, keySize = Nothing
, keyMtime = Nothing
, keyChunkSize = Nothing
, keyChunkNum = Nothing
}
-- Gets the parent of a chunk key.
nonChunkKey :: Key -> Key
nonChunkKey k = k
{ keyChunkSize = Nothing
, keyChunkNum = Nothing
}
-- Where a chunk key is offset within its parent.
chunkKeyOffset :: Key -> Maybe Integer
chunkKeyOffset k = (*)
<$> keyChunkSize k
<*> (pred <$> keyChunkNum k)
isChunkKey :: Key -> Bool
isChunkKey k = isJust (keyChunkSize k) && isJust (keyChunkNum k)
-- Checks if a string looks like at least the start of a key.
isKeyPrefix :: String -> Bool
isKeyPrefix s = [fieldSep, fieldSep] `isInfixOf` s
fieldSep :: Char
fieldSep = '-'
{- Converts a key to a string that is suitable for use as a filename.
- The name field is always shown last, separated by doubled fieldSeps,
- and is the only field allowed to contain the fieldSep. -}
key2file :: Key -> FilePath
key2file Key { keyVariety = kv, keySize = s, keyMtime = m, keyChunkSize = cs, keyChunkNum = cn, keyName = n } =
formatKeyVariety kv +++ ('s' ?: s) +++ ('m' ?: m) +++ ('S' ?: cs) +++ ('C' ?: cn) +++ (fieldSep : n)
where
"" +++ y = y
x +++ "" = x
x +++ y = x ++ fieldSep:y
f ?: (Just v) = f : show v
_ ?: _ = ""
file2key :: FilePath -> Maybe Key
file2key s
| key == Just stubKey || (keyName <$> key) == Just "" || (keyVariety <$> key) == Just (OtherKey "") = Nothing
| otherwise = key
where
key = startbackend stubKey s
startbackend k v = sepfield k v addvariety
sepfield k v a = case span (/= fieldSep) v of
(v', _:r) -> findfields r $ a k v'
_ -> Nothing
findfields (c:v) (Just k)
| c == fieldSep = addkeyname k v
| otherwise = sepfield k v $ addfield c
findfields _ v = v
addvariety k v = Just k { keyVariety = parseKeyVariety v }
-- This is a strict parser for security reasons; a key
-- can contain only 4 fields, which all consist only of numbers.
-- Any key containing other fields, or non-numeric data is
-- rejected with Nothing.
--
-- If a key contained non-numeric fields, they could be used to
-- embed data used in a SHA1 collision attack, which would be a
-- problem since the keys are committed to git.
addfield _ _ v | not (all isDigit v) = Nothing
addfield 's' k v = do
sz <- readish v
return $ k { keySize = Just sz }
addfield 'm' k v = do
mtime <- readish v
return $ k { keyMtime = Just mtime }
addfield 'S' k v = do
chunksize <- readish v
return $ k { keyChunkSize = Just chunksize }
addfield 'C' k v = case readish v of
Just chunknum | chunknum > 0 ->
return $ k { keyChunkNum = Just chunknum }
_ -> Nothing
addfield _ _ _ = Nothing
addkeyname k v
| validKeyName k v = Just $ k { keyName = v }
| otherwise = Nothing
{- When a key HasExt, the length of the extension is limited in order to
- mitigate against SHA1 collision attacks.
-
- In such an attack, the extension of the key could be made to contain
- the collision generation data, with the result that a signed git commit
- including such keys would not be secure.
-
- The maximum extension length ever generated for such a key was 8
- characters; 20 is used here to give a little future wiggle-room.
- The SHA1 common-prefix attack needs 128 bytes of data.
-}
validKeyName :: Key -> String -> Bool
validKeyName k name
| hasExt (keyVariety k) = length (takeExtensions name) <= 20
| otherwise = True
instance Arbitrary Key where
arbitrary = Key
<$> (listOf1 $ elements $ ['A'..'Z'] ++ ['a'..'z'] ++ ['0'..'9'] ++ "-_\r\n \t")
<*> (parseKeyVariety <$> (listOf1 $ elements ['A'..'Z'])) -- BACKEND
<*> ((abs <$>) <$> arbitrary) -- size cannot be negative
<*> ((abs . fromInteger <$>) <$> arbitrary) -- mtime cannot be negative
<*> ((abs <$>) <$> arbitrary) -- chunksize cannot be negative
<*> ((succ . abs <$>) <$> arbitrary) -- chunknum cannot be 0 or negative
instance Hashable Key where
hashIO32 = hashIO32 . key2file
hashIO64 = hashIO64 . key2file
instance ToJSON' Key where
toJSON' = toJSON' . key2file
instance FromJSON Key where
parseJSON (String t) = maybe mempty pure $ file2key $ T.unpack t
parseJSON _ = mempty
instance Proto.Serializable Key where
serialize = key2file
deserialize = file2key
prop_isomorphic_key_encode :: Key -> Bool
prop_isomorphic_key_encode k = Just k == (file2key . key2file) k
prop_isomorphic_key_decode :: FilePath -> Bool
prop_isomorphic_key_decode f
| normalfieldorder = maybe True (\k -> key2file k == f) (file2key f)
| otherwise = True
where
-- file2key will accept the fields in any order, so don't
-- try the test unless the fields are in the normal order
normalfieldorder = fields `isPrefixOf` "smSC"
fields = map (f !!) $ filter (< length f) $ map succ $
elemIndices fieldSep f