Similar to the assistant, this honors any configured preferred content
expressions.
I am not entirely happpy with the implementation. It would be nicer if
the seek function returned a list of actions which included the individual
file gets and copies and drops, rather than the current list of calls to
syncContent. This would allow getting rid of the somewhat reundant display
of "sync file [ok|failed]" after the get/put display.
But, do that, withFilesInGit would need to somehow be able to construct
such a mixed action list. And it would be less efficient than the current
implementation, which is able to reuse several values between eg get and
drop.
Note that currently this does not try to satisfy numcopies when
getting/putting files (numcopies are of course checked when dropping
files!) This makes it like the assistant, and unlike get --auto
and copy --auto, which do duplicate files when numcopies is not yet
satisfied. I don't know if this is the right decision; it only seemed to
make sense to have this parallel the assistant as far as possible to start
with, since I know the assistant works.
This commit was sponsored by Øyvind Andersen Holm.
The assistant's commit code also always avoids git commit, for simplicity.
Indirect mode sync still does a git commit -a to catch unstaged changes.
Note that this means that direct mode sync no longer runs the pre-commit
hook or any other hooks git commit might call. The git annex pre-commit
hook action for direct mode is however explicitly run. (The assistant
already ran git commit with hooks disabled, so no change there.)
Now that direct mode sets core.bare=true, git's normal prohibition about
pushing into the currently checked out branch doesn't work.
A simple fix for this would be an update hook which blocks the pushes..
but git hooks must be executable, and git-annex needs to be usable on eg,
FAT, which lacks x bits.
Instead, enabling direct mode switches the branch (eg master) to a special
purpose branch (eg annex/direct/master). This branch is not pushed when
syncing; instead any changes that git annex sync commits get written to
master, and it's pushed (along with synced/master) to the remote.
Note that initialization has been changed to always call setDirect,
even if it's just setDirect False for indirect mode. This is needed because
if the user has just cloned a direct mode repo, that nothing has synced
with before, it may have no master branch, and only a annex/direct/master.
Resulting in that branch being checked out locally too. Calling setDirect False
for indirect mode moves back out of this branch, to a new master branch,
and ensures that a manual "git push" doesn't push changes directly to
the annex/direct/master of the remote. (It's possible that the user
makes a commit w/o using git-annex and pushes it, but nothing I can do
about that really.)
This commit was sponsored by Jonathan Harrington.
Note that this case is only fully automatically resolved in direct mode.
In indirect mode, git merge moves the file to file~HEAD, and replaces it
with the directory, and leaves the file in unmerged state, and sync doesn't
yet change that.
Done using a mode witness, which ensures it's fixed everywhere.
Fixing catFileKey was a bear, because git cat-file does not provide a
nice way to query for the mode of a file and there is no other efficient
way to do it. Oh, for libgit2..
Note that I am looking at tree objects from HEAD, rather than the index.
Because I cat-file cannot show a tree object for the index.
So this fix is technically incomplete. The only cases where it matters
are:
1. A new large file has been directly staged in git, but not committed.
2. A file that was committed to HEAD as a symlink has been staged
directly in the index.
This could be fixed a lot better using libgit2.
Ie, when there'a a conflicted merge we may get foo.variant-xxxx
created in a merge. If a second merge conflict occurs on that new file,
it was not falling back to putting in the whole key (which should stop
the merge conflicts happening for good, but is ugly).
There may be already staged changes from a prior `git annex add`,
so always commit.
Also, suppressed the commit output, since it contains noise due to
typechanged files in direct mode.
This is so git remotes on servers without git-annex installed can be used
to keep clients' git repos in sync.
This is a behavior change, but since annex-sync can be set to disable
syncing with a remote, I think it's acceptable.
* since this is a crippled filesystem anyway, git-annex doesn't use
symlinks on it
* so there's no reason to use the mixed case hash directories that we're
stuck using to avoid breaking everyone's symlinks to the content
* so we can do what is already done for all bare repos, and make non-bare
repos on crippled filesystems use the all-lower case hash directories
* which are, happily, all 3 letters long, so they cannot conflict with
mixed case hash directories
* so I was able to 100% fix this and even resuming `git annex add` in the
test case will recover and it will all just work.
Pass subcommand as a regular param, which allows passing git parameters
like -c before it. This was already done in the pipeing set of functions,
but not the command running set.
Refactored annex link code into nice clean new library.
Audited and dealt with calls to createSymbolicLink.
Remaining calls are all safe, because:
Annex/Link.hs: ( liftIO $ createSymbolicLink linktarget file
only when core.symlinks=true
Assistant/WebApp/Configurators/Local.hs: createSymbolicLink link link
test if symlinks can be made
Command/Fix.hs: liftIO $ createSymbolicLink link file
command only works in indirect mode
Command/FromKey.hs: liftIO $ createSymbolicLink link file
command only works in indirect mode
Command/Indirect.hs: liftIO $ createSymbolicLink l f
refuses to run if core.symlinks=false
Init.hs: createSymbolicLink f f2
test if symlinks can be made
Remote/Directory.hs: go [file] = catchBoolIO $ createSymbolicLink file f >> return True
fast key linking; catches failure to make symlink and falls back to copy
Remote/Git.hs: liftIO $ catchBoolIO $ createSymbolicLink loc file >> return True
ditto
Upgrade/V1.hs: liftIO $ createSymbolicLink link f
v1 repos could not be on a filesystem w/o symlinks
Audited and dealt with calls to readSymbolicLink.
Remaining calls are all safe, because:
Annex/Link.hs: ( liftIO $ catchMaybeIO $ readSymbolicLink file
only when core.symlinks=true
Assistant/Threads/Watcher.hs: ifM ((==) (Just link) <$> liftIO (catchMaybeIO $ readSymbolicLink file))
code that fixes real symlinks when inotify sees them
It's ok to not fix psdueo-symlinks.
Assistant/Threads/Watcher.hs: mlink <- liftIO (catchMaybeIO $ readSymbolicLink file)
ditto
Command/Fix.hs: stopUnless ((/=) (Just link) <$> liftIO (catchMaybeIO $ readSymbolicLink file)) $ do
command only works in indirect mode
Upgrade/V1.hs: getsymlink = takeFileName <$> readSymbolicLink file
v1 repos could not be on a filesystem w/o symlinks
Audited and dealt with calls to isSymbolicLink.
(Typically used with getSymbolicLinkStatus, but that is just used because
getFileStatus is not as robust; it also works on pseudolinks.)
Remaining calls are all safe, because:
Assistant/Threads/SanityChecker.hs: | isSymbolicLink s -> addsymlink file ms
only handles staging of symlinks that were somehow not staged
(might need to be updated to support pseudolinks, but this is
only a belt-and-suspenders check anyway, and I've never seen the code run)
Command/Add.hs: if isSymbolicLink s || not (isRegularFile s)
avoids adding symlinks to the annex, so not relevant
Command/Indirect.hs: | isSymbolicLink s -> void $ flip whenAnnexed f $
only allowed on systems that support symlinks
Command/Indirect.hs: whenM (liftIO $ not . isSymbolicLink <$> getSymbolicLinkStatus f) $ do
ditto
Seek.hs:notSymlink f = liftIO $ not . isSymbolicLink <$> getSymbolicLinkStatus f
used to find unlocked files, only relevant in indirect mode
Utility/FSEvents.hs: | Files.isSymbolicLink s = runhook addSymlinkHook $ Just s
Utility/FSEvents.hs: | Files.isSymbolicLink s ->
Utility/INotify.hs: | Files.isSymbolicLink s ->
Utility/INotify.hs: checkfiletype Files.isSymbolicLink addSymlinkHook f
Utility/Kqueue.hs: | Files.isSymbolicLink s = callhook addSymlinkHook (Just s) change
all above are lower-level, not relevant
Audited and dealt with calls to isSymLink.
Remaining calls are all safe, because:
Annex/Direct.hs: | isSymLink (getmode item) =
This is looking at git diff-tree objects, not files on disk
Command/Unused.hs: | isSymLink (LsTree.mode l) = do
This is looking at git ls-tree, not file on disk
Utility/FileMode.hs:isSymLink :: FileMode -> Bool
Utility/FileMode.hs:isSymLink = checkMode symbolicLinkMode
low-level
Done!!
This fixes a problem I was seeing in the assistant where two remotes would
attempt to sync with one another at the same time, and both failed pushing
the diverged git-annex branch. Then when both tried to resolve the failed
push, they each modified their git-annex branch, which again each blocked
the other from pushing into it. The result was that the git-annex
branches were perpetually diverged (despite having the same content!) and
once the assistant fell into this trap, it couldn't get out and always
had to do the slow push/fail/pull/merge/push/fail cycle.
Found a very cheap way to determine when a disconnected remote has
diverged, and has new content that needs to be transferred: Piggyback on
the git-annex branch update, which already checks for divergence.
However, this does not check if new content has appeared locally while
disconnected, that should be transferred to the remote.
Also, this does not handle cases where the two git repos are in sync,
but their content syncing has not caught up yet.
This code could have its efficiency improved:
* When multiple remotes are synced, if any one has diverged, they're
all queued for transfer scans.
* The transfer scanner could be told whether the remote has new content,
the local repo has new content, or both, and could optimise its scan
accordingly.