When there are multiple gateways to a cluster, this sets up proxying
for nodes that are accessed via a remote gateway.
Eg, when running in nyc and amsterdam is the remote gateway,
and it has node1 and node2, this sets up proxying for
amsterdam-node1 and amsterdam-node2. A client that has nyc as a remote
will see proxied remotes nyc-amsterdam-node1 and nyc-amsterdam-node2.
Just look at the existing proxied remotes that correspond to already
existing nodes of the cluster, and keep those nodes in the cluster.
While adding any remotes of the local repo that are configured as
cluster nodes. This allows removing cluster nodes from the local repo
and updating, without it also removing nodes provided by other gateways.
Rejected the idea of automatically instantiating remotes for proxies-of-proxies.
That needs cycle protection, while the current behavior, which happened
for free, is that running git-annex updateproxy on the proxy can be used
to configure it, but only for topologies that actually exist.
The problem with that idea is that the cluster's proxy is necessarily a
remote, and necessarily one that we'll want to sync with, since the git
repository is stored there. So when its preferred content wants a file,
and the cluster does too, the file will get uploaded to it as well as to
the cluster. With fanout, the upload to the cluster will populate the
proxy as well, avoiding a second upload. But only if the file is sent to
the cluster first. If it's sent to the proxy first, there will be two
uploads.
Another, lesser problem is that a repository can proxy for more than one
cluster. So when does it make sense to drop content from the repository?
It could be done when dropping from one cluster, but what of the other
one?
This complication was not necessary anyway. Instead, if it's desirable
to have some content accessed from close to the proxy, one of the
cluster nodes can just be put on the same filesystem as it. That will be
just as fast as storing the content on the proxy.
Except when no nodes want a file, it has to be stored somewhere, so
store it on all. Which is not really desirable, but neither is having to
pick one.
ProtoAssociatedFile deserialization is rather broken, and this could
possibly affect preferred content expressions that match on filenames.
The inability to roundtrip whitespace like tabs and newlines through is
not a problem because preferred content expressions can't be written
that match on whitespace such as a tab. For example:
joey@darkstar:~/tmp/bench/z>git-annex wanted origin-node2 'exclude=*CTRL-VTab*'
wanted origin-node2
git-annex: Parse error: Parse failure: near "*"
But, the filtering of control characters could perhaps be a problem. I think
that filtering is now obsolete, git-annex has comprehensive filtering of
control characters when displaying filenames, that happens at a higher level.
However, I don't want to risk a security hole so am leaving in that filtering
in ProtoAssociatedFile deserialization for now.
If the location log says all nodes contain content, pass in all nodes,
rather than none.
The location log can be wrong. While it's good to avoid unncessessary
connections to nodes that already contain a key, it would be bad to
refuse to accept an upload at all when the location log is wrong.
Also, passing in no nodes leaves the proxy in an untenable state. It
can't proxy to no nodes. So it closes the connection. Passing in all
nodes means it has to do the work to connect to all of them, and see
that they say they already have the content, and then it can tell the
client that.
Avoid `git-annex sync --content` etc from operating on cluster nodes by default
since syncing with a cluster implicitly syncs with its nodes. This avoids a
lot of unncessary work when a cluster has a lot of nodes just in checking
if each node's preferred content is satisfied. And it avoids content
being sent to nodes individually, so instead syncing with clusters always
fanout uploads to nodes.
The downside is that there are situations where a cluster's preferred content
settings can be met, but those of its nodes are not. Or where a node does not
contain a key, but the cluster does, and there are not enough copies of the key
yet, so it would be desirable the send it there. I think that's an acceptable
tradeoff. These kind of situations are ones where the cluster itself should
probably be responsible for copying content to the node. Which it can do much
less expensively than a client can. Part of the balanced preferred content
design that I will be working on in a couple of months involves rebalancing
clusters, so I expect to revisit this.
The use of annex-sync config does allow running git-annex sync with a specific
node, or nodes, and it will sync with it. And it's also possible to set
annex-sync git configs to make it sync with a node by default. (Although that
will require setting up an explicit git remote for the node rather than relying
on the proxied remote.)
Logs.Cluster.Basic is needed because Remote.Git cannot import Logs.Cluster
due to a cycle. And the Annex.Startup load of clusters happens
too late for Remote.Git to use that. This does mean one redundant load
of the cluster log, though only when there is a proxy.
This makes git-annex sync and similar not treat proxied remotes as git
syncable remotes.
Also, display in git-annex info remote when the remote is proxied.
Loading the remote list a second time was removing all proxied remotes.
That happened because setting up the proxied remote added some config
fields to the in-memory git config, and on the second load, it saw those
configs and decided not to overwrite them with the proxy.
Now on the second load, that still happens. But now, the proxied
git configs are used to generate a remote same as if those configs were
all set. The reason that didn't happen before was twofold,
the gitremotes cache was not dropped, and the remote's url field was not
set correctly.
The problem with the remote's url field is that while it was marked as
proxy inherited, all other proxy inherited fields are annex- configs.
And the code to inherit didn't work for the url field.
Now it all works, but git-annex sync is left running git push/pull on
the proxied remote, which doesn't work. That still needs to be fixed.
Tested it with small chunk sizes (like 2) and resumes that were
eg 1 byte from the end of the file or beginning of file.
Also, git-annex testremote passes now against a cluster!
With this a PUT to two remotes that have different partial amounts
transferred works reliably. I'm not sure though that it doesn't have
fencepost errors.
When the destination does not start with a copy, the cluster has one or
more copies. If more, dropping would reduce the number of copies, so
numcopies must be checked.
Considered checking how many nodes of the cluster contain a copy. If
only 1 node does, it could allow a move without checking numcopies.
The problem with that, though, is that other nodes of the cluster could
have copies that we don't know about. And dropping from a cluster tries
to drop from all nodes, so will drop even from those. So any drop from a
cluster can remove more than 1 copy.
Dropping from a cluster drops from every node of the cluster.
Including nodes that the cluster does not think have the content.
This is different from GET and CHECKPRESENT, which do trust the
cluster's location log. The difference is that removing from a cluster
should make 100% the content is gone from every node. So doing extra
work is ok. Compare with CHECKPRESENT where checking every node could
make it very expensive, and the worst that can happen in a false
negative is extra work being done.
Extended the P2P protocol with FAILURE-PLUS to handle the case where a
drop from one node succeeds, but a drop from another node fails. In that
case the entire cluster drop has failed.
Note that SUCCESS-PLUS is returned when dropping from a proxied remote
that is not a cluster, when the protocol version supports it. This is
because P2P.Proxy does not know when it's proxying for a single node
cluster vs for a remote that is not a cluster.
This is slightly belt and suspenders, but nothing guarantees that the
peer avoids including its uuid in the SUCCESS-PLUS list as it's supposed
to. And while it probably doesn't matter if the location log is updated
redundantly, let's not find out.
This is obviously necessary in order for dropping from a cluster to be able to
drop from all nodes.
It also avoids violating numcopies when a cluster node is a special remote.
If it were used in the drop proof, nothing would prevent the cluster from
dropping from it.
I had a transfer of 3 files fail like this:
git-annex: transferrer protocol error: "(recording state in git...)"
The remote had stalldetection enabled, although I didn't see it stall.
So git-annex transferrer would have been started up. I guess that
one of these new git-annex branch reads, that happens early, caused
that message due to perhaps an uncommitted git-annex branch change.
Since the transferrer speaks a protocol over stdout, it needs to be
prevented from outputting other messages to stdout. Interestingly,
startupAnnex is run after prepRunCommand, so if a command requests quiet
output it would already be quiet. But the transferrer does not, instead
it calls Annex.setOutput SerializedOutput in its start action.