This is groundwork for using watchFileSize for downloads from external
special remotes.
In Annex.Content.downloadUrl, this potentially avoids jitter in the
progress meter. When downloading with conduit, the meter gets updated based
on both the size of the file, and on the data flowing through conduit.
If that has not yet been flushed to the file, it seems possible for the
meter to run backwards when meter is updated with the file size.
It's probably only a few kb of jitter, so may not be visible.
Sponsored-by: Dartmouth College's DANDI project
Refactored to allow offline experimentation, and ended up changing the
allowedvariation (aka fudge factor) to 3. 10 seems too high, and 1.5 too low.
Scale earlier, so even if the first chunk takes less than the configured
time period, allowance is made that later chunks might transfer slower.
Decided to use the same allowedvariation to decide when to start
scaling.
Smoothed the scaling out.
Some examples:
ghci> upscale (BwRate 10 (Duration 60)) 25
BwRate 13 (Duration {durationSeconds = 75})
-- A small scaling upwards after 1/3rd the time. Not noticable.
ghci> upscale (BwRate 10 (Duration 60)) 60
BwRate 30 (Duration {durationSeconds = 180})
-- At the configured time, 3x scaling.
ghci> upscale (BwRate 10 (Duration 60)) 120
BwRate 60 (Duration {durationSeconds = 360})
-- A typical upscaling, here a 1 minute duration became 6 minutes
-- due to the first chunk taking 2 minutes to transfer.
ghci> upscale (BwRate 10 (Duration 60)) 600
BwRate 300 (Duration {durationSeconds = 1800})
-- Here the first chunk took 10 minutes to transfer, so it will
-- take 30 minutes to detect a stall.
Sponsored-by: Dartmouth College's DANDI project
Improve annex.stalldetection to handle remotes that update progress less
frequently than the configured time period.
In particular, this makes remotes that don't report progress but are
chunked work when transferring a single chunk takes longer than the
specified time period.
Any remotes that just have very low update granulatity would also be
handled by this.
The change to Remote.Helper.Chunked avoids an extra progress update when
resuming an interrupted upload. In that case, the code saw first Nothing
and then Just the already transferred number of bytes, which defeated this
new heuristic. This change will mean that, when resuming an interrupted
upload to a chunked remote that does not do its own progress reporting, the
progress display does not start out displaying the amount sent so far,
until after the first chunk is sent. This behavior change does not seem
like a major problem.
About the scalefudgefactor, it seems reasonable to expect subsequent chunks
to take no more than 1.5 times as long as the first chunk to transfer.
Could set it to 1, but then any chunk taking a little longer would be
treated as a stall. 2 also seems a likely value. Even 10 might be fine?
Sponsored-by: Dartmouth College's DANDI project
Improve disk free space checking when transferring unsized keys to
local git remotes. Since the size of the object file is known, can
check that instead.
Getting unsized keys from local git remotes does not check the actual
object size. It would be harder to handle that direction because the size
check is run locally, before anything involving the remote is done. So it
doesn't know the size of the file on the remote.
Also, transferring unsized keys to other remotes, including ssh remotes and
p2p remotes don't do disk size checking for unsized keys. This would need a
change in protocol.
(It does seem like it would be possible to implement the same thing for
directory special remotes though.)
In some sense, it might be better to not ever do disk free checking for
unsized keys, than to do it only sometimes. A user might notice this
direction working and consider it a bug that the other direction does not.
On the other hand, disk reserve checking is not implemented for most
special remotes at all, and yet it is implemented for a few, which is also
inconsistent, but best effort. And so doing this best effort seems to make
some sense. Fundamentally, if the user wants the size to always be checked,
they should not use unsized keys.
Sponsored-by: Brock Spratlen on Patreon
The old code traversed the list of addtreeitems once per subdirectory in
the tree, so could get quite slow. Converting to Map lookups sped it up
significantly.
In my test case, git-annex import used to take about 2 minutes, when
calling adjustTree to add back excluded files to the imported tree. This
dropped it down to 6 seconds. Of which 4 seconds are the actual
enumeration of the contents of the remote, so really only 2 seconds for
this.
The path prefix map is a bit suboptimal memory-wise, since items get
stored in the map once per subdirectory on the path to the item. It
would perhaps be better to use a tree data structure.
Also it's suboptimal memory-wise that it builds two maps, as well
as retaining a reference to addtreeitems. I could not see a way around
that though.
This is a fixed version of commit 2c86651180.
It fixes a test suite reversion.
Sponsored-by: Jack Hill on Patreon
This works well, and it interoperates with gpg in my testing (although some
SOP commands might choose to use a profile that does not so caveat emptor).
Note that for creating the Cipher, gpg --gen-random is still used. SOP
does not have an eqivilant, and as long as the user has gpg around,
which seems likely, it doesn't matter that it uses gpg here, it's not being
used for encryption. That seemed better than implementing a second way
to get high quality entropy, at least for now.
The need for the sop command to run in an empty directory has each call
to encrypt and decrypt creating a new temporary directory. That is some
unncessary overhead, though probably swamped by the overhead of running
the sop command. This could be improved in the future by passing an
already empty directory to them, or a sufficiently empty directory
(.git/annex/tmp would probably suffice).
Sponsored-by: Brett Eisenberg on Patreon