Added support for storageclass=STANDARD_IA to use Amazon's
new Infrequently Accessed storage.
Also allows using storageclass=NEARLINE to use Google's NearLine storage.
The necessary changes to aws to support this are in
https://github.com/aristidb/aws/pull/176
Now it suffices to run git remote add, followed by git-annex sync. Now the
remote is automatically initialized for use by git-annex, where before the
git-annex branch had to manually be pushed before using git-annex sync.
Note that this involved changes to git-annex-shell, so if the remote is
using an old version, the manual push is still needed.
Implementation required git-annex-shell be changed, so configlist can
autoinit a repository even when no git-annex branch has been pushed yet.
Unfortunate because we'll have to wait for it to get deployed to servers
before being able to rely on this change in the documentation.
Did consider making git-annex sync push the git-annex branch to repos that
didn't have a uuid, but this seemed difficult to do without complicating it
in messy ways.
It would be cleaner to split a command out from configlist to handle
the initialization. But this is difficult without sacrificing backwards
compatability, for users of old git-annex versions which would not use the
new command.
Note that it's possible for a S3 bucket to be configured to allow public
access, but for git-annex to not know that it is. I chose to not show the
url unless public=yes.
In my tests, this has to be set when uploading a file to the bucket
and then the file can be accessed using the bucketname.s3.amazonaws.com
url.
Setting it when creating the bucket didn't seem to make the whole bucket
public, or allow accessing files stored in it. But I have gone ahead and
also sent it when creating the bucket just in case that is needed in some
case.
For example, it failed to get files from a bucket named S3.
Also fixes `git annex initremote UPPERCASE type=S3`, which failed with the
new aws library, with a signing error message.
Avoid using fileSize which maxes out at just 2 gb on Windows.
Instead, use hFileSize, which doesn't have a bounded size.
Fixes support for files > 2 gb on Windows.
Note that the InodeCache code only needs to compare a file size,
so it doesn't matter it the file size wraps. So it has been
left as-is. This was necessary both to avoid invalidating existing inode
caches, and because the code passed FileStatus around and would have become
more expensive if it called getFileSize.
This commit was sponsored by Christian Dietrich.
This threw an unusual exception w/o an error message when probing to see if
the bucket exists yet. So rather than relying on tryS3, catch all
exceptions.
This does mean that it might get an exception for some transient network
error, think this means the bucket DNE yet, and try to create it, and then
fail when it already exists.
When uploading the last part of a file, which was 640229 bytes, S3 rejected
that part: "Your proposed upload is smaller than the minimum allowed size"
I don't know what the minimum is, but the fix is just to include the last
part into the previous part. Since this can result in a part that's
double-sized, use half-sized parts normally.
Unfortunately, I don't fully understand why it was leaking using the old
method of a lazy bytestring. I just know that it was leaking, despite
neither hGetUntilMetered nor byteStringPopper seeming to leak by
themselves.
The new method avoids the lazy bytestring, and simply reads chunks from the
handle and streams them out to the http socket.
Untested and not even compiled yet.
Testing should include checks that file content streams through without
buffering in memory.
Note that CL.consume causes all the etags to be buffered in memory.
This is probably nearly unavoidable, since a request has to be constructed
that contains the list of etags in its body. (While it might be possible to
stream generation of the body, that would entail making a http request that
dribbles out parts of the body as the multipart uploads complete, which is
not likely to work well..
To limit this being a problem, it's best for partsize to be set to some
suitably large value, like 1gb. Then a full terabyte file will need only
1024 etags to be stored, which will probably use around 1 mb of memory.
I'm a little stuck on getting the list of etags of the parts.
This seems to require taking the md5 of each part locally,
which doesn't get along well with lazily streaming in the part from the
file. It would need to read the file twice, or lose laziness and buffer a
whole part -- but parts might be quite large.
This seems to be a problem with the API provided; S3 is supposed to return
an etag, but that is not exposed. I have filed a bug:
https://github.com/aristidb/aws/issues/141