Avoids doing auto-merging in commands that don't need fully current
information from the git-annex branch. In particular, git annex add no
longer needs to auto-merge. Affected commands: Anything that doesn't
look up data from the branch, but does write a change to it.
It might seem counterintuitive that we can change a value without first
making sure we have the current value. This optimisation works because
these two sequences are equivilant:
1. pull from remote
2. union merge
3. read file from branch
4. modify file and write to branch
vs.
1. read file from branch
2. modify file and write to branch
3. pull from remote
4. union merge
After either sequence, the git-annex branch contains the same logical content
for the modified file. (Possibly with lines in a different order or
additional old lines of course).
More accurately, it was supported already when map uses git-annex-shell,
but not when it does not.
Note that the user name cannot be shell escaped using git-annex's current
approach for shell escaping. I tried and some shells like dash cannot
cd ~'joey'. Rest of directory is still shell escaped, not for security but
in case a directory has a space or other weird character.
git-annex-shell inannex now returns always 0, 1, or 100 (the last when
it's unclear if content is currently in the index due to it currently being
moved or dropped).
(Actual locking code still not yet written.)
The lock will only persist during the perform stage, so the content must
be removed from the annex then, rather than in the cleanup stage.
(No lock is actually taken yet.)
Thanks Valentin Haenel for a test case showing how non-fast-forward merges
could result in an ongoing pull/merge/push cycle.
While the git-annex branch is fast-forwarded, git-annex's index file is still
updated using the union merge strategy as before. There's no other way to
update the index that would be any faster.
It is possible that a union merge and a fast-forward result in different file
contents: Files should have the same lines, but a union merge may change
their order. If this happens, the next commit made to the git-annex branch
will have some unnecessary changes to line orders, but the consistency
of data should be preserved.
Note that when the journal contains changes, a fast-forward is never attempted,
which is fine, because committing those changes would be vanishingly unlikely
to leave the git-annex branch at a commit that already exists in one of
the remotes.
The real difficulty is handling the case where multiple remotes have all
changed. git-annex does find the best (ie, newest) one and fast forwards
to it. If the remotes are diverged, no fast-forward is done at all. It would
be possible to pick one, fast forward to it, and make a merge commit to
the rest, I see no benefit to adding that complexity.
Determining the best of N changed remotes requires N*2+1 calls to git-log, but
these are fast git-log calls, and N is typically small. Also, typically
some or all of the remote refs will be the same, and git-log is not called to
compare those. In the real world I expect this will almost always add only
1 git-log call to the merge process. (Which already makes N anyway.)
To get old behavior, add a .gitattributes containing: * annex.backend=WORM
I feel that SHA256 is a better default for most people, as long as their
systems are fast enough that checksumming their files isn't a problem.
git-annex should default to preserving the integrity of data as well as git
does. Checksum backends also work better with editing files via
unlock/lock.
I considered just using SHA1, but since that hash is believed to be somewhat
near to being broken, and git-annex deals with large files which would be a
perfect exploit medium, I decided to go to a SHA-2 hash.
SHA512 is annoyingly long when displayed, and git-annex displays it in a
few places (and notably it is shown in ls -l), so I picked the shorter
hash. Considered SHA224 as it's even shorter, but feel it's a bit weird.
I expect git-annex will use SHA-3 at some point in the future, but
probably not soon!
Note that systems without a sha256sum (or sha256) program will fall back to
defaulting to SHA1.