smudge: When annex.largefiles=anything, files that were already stored in
git, and have not been modified could sometimes be converted to being
stored in the annex. Changes in 7.20191024 made this more of a problem.
This case is now detected and prevented.
* annex.addunlocked can be set to an expression with the same format used by
annex.largefiles, in case you want to default to unlocking some files but
not others.
* annex.addunlocked can be configured by git-annex config.
Added a git-annex-matching-expression man page, broken out from
tips/largefiles.
A tricky consequence of this is that git-annex add --relaxed
honors annex.addunlocked, but an expression might want to know the size
or content of an url, which it's not going to download. I decided it was
better not to fail, and just dummy up some plausible data in that case.
Performance impact should be negligible. The global config is already
loaded for annex.largefiles. The expression only has to be parsed once,
and in the simple true/false case, it should not do any additional work
matching it.
Remove dup definitions and just use the RawFilePath one. </> etc are
enough faster that it's probably faster than building a String directly,
although I have not benchmarked.
My ByteString rewrite oversimplified it, resulting in any _ in a journal
file turning into a / in the git-annex branch, which was often the wrong
filename, or sometimes (//) an invalid filename that git
refused to add.
git-annex find is now RawFilePath end to end, no string conversions.
So is git-annex get when it does not need to get anything.
So this is a major milestone on optimisation.
Benchmarks indicate around 30% speedup in both commands.
Probably many other performance improvements. All or nearly all places
where a file is statted use RawFilePath now.
The parser and looking up config keys in the map should both be faster
due to using ByteString.
I had hoped this would speed up startup time, but any improvement to
that was too small to measure. Seems worth keeping though.
Note that the parser breaks up the ByteString, but a config map ends up
pointing to the config as read, which is retained in memory until every
value from it is no longer used. This can change memory usage
patterns marginally, but won't affect git-annex.
While L.toStrict copies, profiling showed it was only around 0.3% of
git-annex find runtime. Does not seem worth optimising that, which would
probably involve either a major refactoring, or a use of
UnsafeInterleaveIO.
Also, it seems to me that the latter would need to read chunks, and
preappend the leftover part to the next chunk. But a strict ByteString
append itself is a copy, so I'm not convinced that would be faster than
L.toStrict.