Found a very cheap way to determine when a disconnected remote has
diverged, and has new content that needs to be transferred: Piggyback on
the git-annex branch update, which already checks for divergence.
However, this does not check if new content has appeared locally while
disconnected, that should be transferred to the remote.
Also, this does not handle cases where the two git repos are in sync,
but their content syncing has not caught up yet.
This code could have its efficiency improved:
* When multiple remotes are synced, if any one has diverged, they're
all queued for transfer scans.
* The transfer scanner could be told whether the remote has new content,
the local repo has new content, or both, and could optimise its scan
accordingly.
Make Utility.Process wrap the parts of System.Process that I use,
and add debug logging to them.
Also wrote some higher-level code that allows running an action
with handles to a processes stdin or stdout (or both), and checking
its exit status, all in a single function call.
As a bonus, the debug logging now indicates whether the process
is being run to read from it, feed it data, chat with it (writing and
reading), or just call it for its side effect.
Test suite now passes with -threaded!
I traced back all the hangs with -threaded to System.Cmd.Utils. It seems
it's just crappy/unsafe/outdated, and should not be used. System.Process
seems to be the cool new thing, so converted all the code to use it
instead.
In the process, --debug stopped printing commands it runs. I may try to
bring that back later.
Note that even SafeSystem was switched to use System.Process. Since that
was a modified version of code from System.Cmd.Utils, it needed to be
converted too. I also got rid of nearly all calls to forkProcess,
and all calls to executeFile, which I'm also doubtful about working
well with -threaded.
While I was in there, I noticed and fixed a bug in the queue size
calculations. It was never encountered only because Queue.add was
only ever run with 1 file in the list.
There's a race adding a new file to the annex: The file is moved to the
annex and replaced with a symlink, and then we git add the symlink. If
someone comes along in the meantime and replaces the symlink with
something else, such as a new large file, we add that instead. Which could
be bad..
This race is fixed by avoiding using git add, instead the symlink is
directly staged into the index.
It would be nice to make `git annex add` use this same technique.
I have not done so yet because it currently runs git update-index once per
file, which would slow does `git annex add`. A future enhancement would be
to extend the Git.Queue to include the ability to run update-index with
a list of Streamers.
This allows the queue to be used in a single process for multiple possibly
conflicting commands, like add and rm, without running them out of order.
This assumes that running the same git subcommand with different parameters
cannot itself conflict.
Baked into the code was an assumption that a repository's git directory
could be determined by adding ".git" to its work tree (or nothing for bare
repos). That fails when core.worktree, or GIT_DIR and GIT_WORK_TREE are
used to separate the two.
This was attacked at the type level, by storing the gitdir and worktree
separately, so Nothing for the worktree means a bare repo.
A complication arose because we don't learn where a repository is bare
until its configuration is read. So another Location type handles
repositories that have not had their config read yet. I am not entirely
happy with this being a Location type, rather than representing them
entirely separate from the Git type. The new code is not worse than the
old, but better types could enforce more safety.
Added support for core.worktree. Overriding it with -c isn't supported
because it's not really clear what to do if a git repo's config is read, is
not bare, and is then overridden to bare. What is the right git directory
in this case? I will worry about this if/when someone has a use case for
overriding core.worktree with -c. (See Git.Config.updateLocation)
Also removed and renamed some functions like gitDir and workTree that
misused git's terminology.
One minor regression is known: git annex add in a bare repository does not
print a nice error message, but runs git ls-files in a way that fails
earlier with a less nice error message. This is because before --work-tree
was always passed to git commands, even in a bare repo, while now it's not.
annex.ssh-options, annex.rsync-options, annex.bup-split-options.
And adjust types to avoid the bugs that broke several config settings
recently. Now "annex." prefixing is enforced at the type level.
A bit tricky to avoid printing it twice in a row when there are queued git
commands to run and journal to stage.
Added a generic way to run an action that may output multiple side
messages, with only the first displayed.
This is incomplete, it does not honor it yet for hash directories
and other annex bookkeeping files. Some of that is not needed for a bare
repo; some of it may be.
getConfig got a remote-specific config, and this confusing name caused it
to be used a couple of places that only were interested in global configs.
Rename to getRemoteConfig and make getConfig only get global configs.
There are no behavior changes here, but remote.<name>.annex-web-options
never actually worked (and per-remote web options is a very unlikely to be
useful case so I didn't make it work), so fix the documentation for it.
Don't check if configure indicated checks won't work. This should fix a
FTBFS on mipsel, where configure correctly detects the checks won't work,
while garbage is returned for disk space info at git-annex runtime. It also
means that, when built via cabal, disk space checks are not enabled,
unfortunatly.
.. Allowing it to be used by things in constant space!
Random statistics: git annex status has gone from taking 239 mb
of memory and 26 seconds in a repo, to 8 mb and 13 seconds.
The trick here is the unsafeInterleaveIO, and the form of the function's
recursion, which I cribbed heavily from System.IO.HVFS.Utils.recurseDirStat.
The difference is, this one goes to a limited depth and avoids statting
everything.
Before, it leaked space due to caching lists of keys. Now all necessary
data about keys is calculated as they stream in.
The "nearly constant" is due to getKeysPresent, which builds up a lot
of [] thunks as it traverses .git/annex/objects/. Will deal with it later.
Now changes are staged into the branch's index, but not committed,
which avoids growing a large journal. And sync and merge always
explicitly commit, ensuring that even when they do nothing else,
they commit the staged changes.
Added a flag file to indicate that the branch's journal contains
uncommitted changes. (Could use git ls-files, but don't want to run
that every time.)
In the future, this ability to have uncommitted changes staged in the
journal might be used on remotes after a series of oneshot commands.
To avoid commits of data to the git-annex branch after each command
is run, set annex.alwayscommit=false. Its data will then be committed
less frequently, when a merge or sync is done.
I was able to reproduce this on linux using the kernel's nfs server and
mounting localhost:/. Determined that removing the directory fails when
the just-deleted file in it was locked. Considered dropping the lock
before removing the directory, but this would complicate parts of the code
that should not need to worry about locking. So instead, ignore the failure
to remove the directory in this case.
While I was at it, made it attempt to remove both levels of hash
directories, in case they're empty.
useful when adding hundreds of thousands of files on a system with plenty
of memory.
git add gets quite slow in such a large repository, so if the system has
more than the ~32 mb of memory the queue can use by default, it's a useful
optimisation to increase the queue size, in order to decrease the number
of times git add is run.
The list of files had to be retained until the end so it could be deleted.
Also, a list of update-index lines was generated and only then fed into it.
Now everything streams in constant space.
When hashing the files, the entire list of shas was read strictly.
That was entirely unnecessary, since there's a cleanup action run
after they're consumed.