It's possible for two processes or threads to both be doing the same
operation at the same time. Eg, both dropping the same key. If one
finishes and updates the rollingtotal, then the other one needs to be
prevented from later updating the rollingtotal as well. And they could
finish at the same time, or with some time in between.
Addressed this by making updateRepoSize be called with the journal
locked, and only once it's been determined that there is an actual
location change to record in the log. updateRepoSize waits for the
database to be updated.
When there is a redundant operation, updateRepoSize won't be called,
and the redundant LiveUpdate will be removed from the database on
garbage collection.
But: There will be a window where the redundant LiveUpdate is still
visible in the db, and processes can see it, combine it with the
rollingtotal, and arrive at the wrong size. This is a small window, but
it still ought to be addressed. Unsure if it would always be safe to
remove the redundant LiveUpdate? Consider the case where two drops and a
get are all running concurrently somehow, and the order they finish is
[drop, get, drop]. The second drop seems redundant to the first, but
it would not be safe to remove it. While this seems unlikely, it's hard
to rule out that a get and drop at different stages can both be running
at the same time.
This adds a separate journal, which does not currently get committed to
an index, but is planned to be committed to .git/annex/index-private.
Changes that are regarding a UUID that is private will get written to
this journal, and so will not be published into the git-annex branch.
All log writing should have been made to indicate the UUID it's
regarding, though I've not verified this yet.
Currently, no UUIDs are treated as private yet, a way to configure that
is needed.
The implementation is careful to not add any additional IO work when
privateUUIDsKnown is False. It will skip looking at the private journal
at all. So this should be free, or nearly so, unless the feature is
used. When it is used, all branch reads will be about twice as expensive.
It is very lucky -- or very prudent design -- that Annex.Branch.change
and maybeChange are the only ways to change a file on the branch,
and Annex.Branch.set is only internal use. That let Annex.Branch.get
always yield any private information that has been recorded, without
the risk that Annex.Branch.set might be called, with a non-private UUID,
and end up leaking the private information into the git-annex branch.
And, this relies on the way git-annex union merges the git-annex branch.
When reading a file, there can be a public and a private version, and
they are just concacenated together. That will be handled the same as if
there were two diverged git-annex branches that got union merged.
Especially from borg, where the content identifier logs
all end up being the same identical file!
But also, for other imports, the location tracking logs can,
in some cases, be identical files.
Bonus optimisation: Avoid looking up (and parsing when set)
GIT_ANNEX_VECTOR_CLOCK env var every time a log is written to.
Although the lookup does happen at startup even when no
log will be written now.
This solves the problem of sameas remotes trampling over per-remote
state. Used for:
* per-remote state, of course
* per-remote metadata, also of course
* per-remote content identifiers, because two remote implementations
could in theory generate the same content identifier for two different
peices of content
While chunk logs are per-remote data, they don't use this, because the
number and size of chunks stored is a common property across sameas
remotes.
External special remote had a complication, where it was theoretically
possible for a remote to send SETSTATE or GETSTATE during INITREMOTE or
EXPORTSUPPORTED. Since the uuid of the remote is typically generate in
Remote.setup, it would only be possible to pass a Maybe
RemoteStateHandle into it, and it would otherwise have to construct its
own. Rather than go that route, I decided to send an ERROR in this case.
It seems unlikely that any existing external special remote will be
affected. They would have to make up a git-annex key, and set state for
some reason during INITREMOTE. I can imagine such a hack, but it doesn't
seem worth complicating the code in such an ugly way to support it.
Unfortunately, both TestRemote and Annex.Import needed the Remote
to have a new field added that holds its RemoteStateHandle.
untested
This won't be super slow, but it does need to diff two likely large
trees, and since the git-annex branch rarely sits still, it will most
likely be run at the beginning of every import.
A possible speed improvement would be to only run this when the database
did not contain a ContentIdentifier. But that would only speed up
imports when there is no new version of a file on the special remote,
at most renames of existing files being imported.
A better speed improvement would be to record something in the git-annex
branch that indicates when an import has been run, and only do the diff
if the git-annex branch has record of a newer import than we've seen
before. Then, it would only run when there is in fact new
ContentIdentifier information available from a remote. Certianly doable,
but didn't want to complicate things yet.
An empty list of [ContentIdenfier] serialized to the same thing
as a single ContentIdentifier "". Avoid this ambiguity by requiring the
list be non-empty.